🔥面试必备:高频算法题汇总「图文解析 + 教学视频 + 范例代码」之 二分 + 哈希表 + 堆 + 优先队列 合集!🔥

面试

本文将覆盖 二分 + 哈希表 + + 优先队列 方面的面试算法题,文中我将给出:

  1. 面试中的题目
  2. 解题的思路
  3. 特定问题的技巧和注意事项
  4. 考察的知识点及其概念
  5. 详细的代码和解析
    在开始之前,我们先看下会有哪些重点内容:
本文

现在就让我们开始吧!



二分

  • **概# 二分

  • 概念:
    二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

  • 基本思路:

  1. 首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较
  2. 如果两者相等,则查找成功
  3. 否则利用中间位置记录将表分成前、后两个子表
  4. 如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表
  5. 否则进一步查找后一子表
  6. 重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
在这里插入图片描述





二分搜索

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

技巧:

分析二分查找的一个技巧是:

  • 不要出现 else,而是把所有情况用 if / else if 写清楚
  • 这样可以清楚地展现所有细节。

这里我们以递归非递归方式,解决面试中的二分搜索题

在这里插入图片描述
递归

思路很简单:

  • 判断起始点是否大于终止点
  • 比较 nums[mid]与目标值大小
  • 如果 nums[mid]大,说明目标值 target 在前面
  • 反之如果 nums[mid]小,说明目标值 target 在前面后面
  • 如果既不大也不小,说明相等,则返回当前位置
class Solution {
    public int search(int[] nums, int target) {
        return binarySearch(nums, 0, nums.length - 1, target);
    }

    private int binarySearch(int[] nums, int start, int end, int target) {
        if(start > end) {
            return -1;
        }
        int mid = (end + start) / 2;
        if(nums[mid] < target) {
            return binarySearch(nums, mid + 1, end, target);
        }
        if(nums[mid] > target) {
            return binarySearch(nums, start, mid - 1, target);
        }
        return mid;
    }
}
非递归

这个场景是最简单的:

  • 搜索一个数
  • 如果存在, 返回其索引
  • 否则返回 -1
int binarySearch(int[] nums, int target) {
    int left = 0; 
    // 注意减 1
    int right = nums.length - 1; 

    while(left <= right) {
        int mid = (right + left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; // 注意
        else if (nums[mid] > target)
            right = mid - 1; // 注意
        }
    return -1;
}
相关视频

分钟教你二分查找(python版)





X的平方根

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

示例 2:

输入: 8
输出: 2
说明: 8 的平方根是 2.82842...,
由于返回类型是整数,小数部分将被舍去。

解题思路

使用二分法搜索平方根的思想很简单:

  • 就类似于小时候我们看的电视节目中的“猜价格”游戏
  • 高了就往低了猜
  • 低了就往高了猜
  • 范围越来越小。

注:一个数的平方根最多不会超过它的一半,例如 8 的平方根,8 的一半是 4,如果这个数越大越是如此

注意:

对于判断条件:

  • 比如说:我们很容易想当然觉得
  • mid == x / midmid * mid == x 是等价的,实际却不然
  • 比如 mid = 2,x = 5
  • 对于 mid == x / mid 就是:2 == 2 返回 true
  • 而对于 mid * mid == x 就是:4 == 5 返回 false

对于边界条件有个坑:

  • 要注意此处耍了一下小技巧,在二分左值和右值相差为1的时候就停止查找;因为在这里,有个对中值取整数的操作,在取整后始终有 start == mid == end则会死循环。

取整操作的误差为1,故而在这里限制条件改成包含1在内的范围start + 1 < end ; 这里减一很精髓

public int sqrt(int x) {
    if (x < 0)  {
        throw new IllegalArgumentException();
    } else if (x <= 1) {
        return x;
    }

    int start = 1, end = x;
    // 直接对答案可能存在的区间进行二分 => 二分答案
    while (start + 1 < end) {
        int mid = start + (end - start) / 2;
        if (mid == x / mid) {
            return mid;
        }  else if (mid < x / mid) {
            start = mid;
        } else {
            end = mid;
        }  
    }
    
    if (end > x / end) {
        return start;
    }
    return end;
}





哈希表

  • 概念
    散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

  • 数据结构
    给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。

在这里插入图片描述

两数之和

给一个整数数组,找到两个数使得他们的和等于一个给定的数 target。需要实现的函数 twoSum 需要返回这两个数的下标。

示例:

给定 nums = [2, 7, 11, 15], target = 9

因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]

解题思路
  • 用一个hashmap来记录
  • key记录target - numbers[i]的值,value记录numbers[i]i的值
  • 如果碰到一个 numbers[j]hashmap中存在
  • 那么说明前面的某个numbers[i]numbers[j]的和为target
  • 那么当前的ij即为答案
public int[] twoSum(int[] numbers, int target) {

    HashMap<Integer,Integer> map = new HashMap<>();

    for (int i = 0; i < numbers.length; i++) {
        // 判断 map 中是否有需要该值的项
        if (map.containsKey(numbers[i])) {
            return new int[]{map.get(numbers[i]), i};
        }
        // 意思可理解为第 i 项,需要 target - numbers[i]
        map.put(target - numbers[i], i);
    }

    return new int[]{};
}





连续数组

给一个二进制数组,找到 0 和 1 数量相等的子数组的最大长度

示例 2:

输入: [0,1,0]
输出: 2
说明: [0, 1] (或 [1, 0]) 是具有相同数量0和1的最长连续子数组。

步骤
  1. 使用一个数字sum维护到i为止1的数量与0的数量的差值

  2. loop i的同时维护sum并将其插入hashmap

  3. 对于某一个sum值,若hashmap中已有这个值

  4. 则当前的isum上一次出现的位置之间的序列0的数量与1的数量相同

public int findMaxLength(int[] nums) {
    Map<Integer, Integer> prefix = new HashMap<>();
    int sum = 0;
    int max = 0;
    // 因为在开始时 0 、 1 的数量都为 0 ,所以必须先存 0 
    // 否则第一次为 0 的时候,<- i - prefix.get(sum) -> 找不到 prefix.get(0)
    prefix.put(0, -1); 
    // 当第一个 0 1 数量相等的情况出现时,数组下标减去-1得到正确的长度
    for (int i = 0; i < nums.length; i++) {
        int num = nums[i];
        if (num == 0) {
            sum--;
        } else {
            sum++;
        }
        // 判断是否已存在 sum 值
        // 存在则说明之前存过
        if (prefix.containsKey(sum)) {
            // 只做判断,不做存储
            max = Math.max(max, i - prefix.get(sum));
        } else {
            prefix.put(sum, i);
        }
    }
    
    return max;
}





最长无重复字符的子串

给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。

输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。

解题思路

HashMap记录每一个字母出现的位置:

  1. 设定一个左边界,到当前枚举到的位置之间的字符串为不含重复字符的子串。
  2. 若新碰到的字符的上一次的位置在左边界右边, 则需要向右移动左边界。
最长无重复字符的子串
视频

大圣算法- 最长无重复字符的子串

public int lengthOfLongestSubstring(String s) {
    if (s == null || s.length() == 0) {
        return 0;
    }
    HashMap<Character, Integer> map = new HashMap<>();
    int max = Integer.MIN_VALUE;
    // 计算无重复字符子串开始的位置
    int start = -1; 
    int current = 0;
    for (int i = 0; i < s.length(); i++) {
        if (map.containsKey(s.charAt(i))) {
            int tmp = map.get(s.charAt(i));
            // 上一次的位置在左边界右边, 则需要向右移动左边界
            if (tmp >= start) { 
                start = tmp;
            }
        } 
        
        map.put(s.charAt(i), i);
        max = Math.max(max, i - start);
    }
    return max;
}





最多点在一条直线上

给出二维平面上的n个点,求最多有多少点在同一条直线上

首先点的定义如下

class Point {
    int x;
    int y;
    Point() { 
        x = 0; y = 0; 
    }
    Point(int a, int b) { 
        x = a; y = b; 
    }
}

示例 :

输入: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出: 4
解释:
^
|
| o
| o o
| o
| o o
+------------------->
0 1 2 3 4 5 6

解题思路

提示:我们会发现,其实只需要考虑当前点之后出现的点i + 1 .. N - 1即可,因为通过点 i-2 的直线已经在搜索点 i-2 的过程中考虑过了。

  • 画一条通过点 i 和之后出现的点的直线,在哈希表中存储这条边并计数为2 = 当前这条直线上有两个点。

  • 存储时,以斜率来区分线与线之间的关系

  • 假设现在 i < i + k < i + l 这三个点在同一条直线上,当画出一条通过 i 和 i+l 的直线会发现已经记录过了,因此对更新这条边对应的计数:count++

在这里插入图片描述

通过 HashMap 记录下两个点之间的斜率相同出现的次数,注意考虑点重合的情况

    public int maxPoints(int[][] points) {
        if (points == null) {
            return 0;
        }
        
        int max = 0;
        for (int i = 0; i < points.length; i++) {
            Map<String, Integer> map = new HashMap<>();
            int maxPoints = 0;
            int overlap = 0;
            for (int j = i + 1; j < points.length; j++) {
                int dy = points[i][1] - points[j][1];
                int dx = points[i][0] - points[j][0];
                // 两个点重合的情况记录下来
                if (dy == 0 && dx == 0) {
                    overlap++;
                    continue;
                }
                // 防止 x 相同 y 不同,但 rate 都为 0 
                // 防止 y 相同 x 不同,但 rate 都为 0 
                // 以及超大数约等于 0 的情况:[[0,0],[94911151,94911150],[94911152,94911151]]
                String rate = "";
                if(dy == 0)
                    rate = "yy";
                else if (dx == 0)
                    rate = "xx";
                else
                    rate = ((dy * 1.0) / dx) + "";
                
                map.put(rate, map.getOrDefault(rate, 0) + 1);
                maxPoints = Math.max(maxPoints, map.get(rate));
            }
            max = Math.max(max, overlap + maxPoints + 1);
        }
        return max; 
    }

堆 / 优先队列

  • (英语:heap)是计算机科学中一类特殊的数据结构的统称。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:

  1. 堆中某个节点的值总是不大于或不小于其父节点的值;
  2. 堆总是一棵完全二叉树。

如下图这是一个最大堆,,因为每一个父节点的值都比其子节点要大。10 比 7 和 2 都大。7 比 5 和 1都大。


在这里插入图片描述
  • 优先队列(priority queue)
    优先队列是一种抽象数据类型,它是一种排序的机制,它有两个核心操作:找出键值最大(优先级最高)的元素、插入新的元素,效果就是他在维护一个动态的队列。可以收集一些元素,并快速取出键值最大的元素,对其操作后移出队列,然后再收集更多的元素,再处理当前键值最大的元素,如此这般。
  • 例如,我们有一台能够运行多个程序的计算机。计算机通过给每个应用一个优先级属性,将应用根据优先级进行排列,计算机总是处理下一个优先级最高的元素。





前K大的数

PriorityQueue 优先队列:Java 的优先队列,保证了每次取最小元素

// 维护一个 PriorityQueue,以返回前K大的数
public int[] topk(int[] nums, int k) {
    int[] result = new int[k];
    if (nums == null || nums.length < k) {
        return result;
    }
    
    Queue<Integer> pq = new PriorityQueue<>();
    for (int num : nums) {
        pq.add(num);
        if (pq.size() > k) {
            // poll() 方法用于检索或获取和删除队列的第一个元素或队列头部的元素
            pq.poll();
        }
    }
    
    for (int i = k - 1; i >= 0; i--) {
        result[i] = pq.poll(); 
    }
    
    return result;
}

前K大的数II

实现一个数据结构,提供下面两个接口:

  1. add(number) 添加一个元素
  2. topk() 返回前K大的数
public class Solution {
    private int maxSize;
    private Queue<Integer> minheap;
    public Solution(int k) {
        minheap = new PriorityQueue<>();
        maxSize = k;
    }

    public void add(int num) {
        if (minheap.size() < maxSize) {
            // add(E e)和offer(E e)的语义相同,都是向优先队列中插入元素
            // 只是Queue接口规定二者对插入失败时的处理不同
            // 前者在插入失败时抛出异常,后则则会返回false
            minheap.offer(num);
            return;
        }
        
        if (num > minheap.peek()) {
            minheap.poll();
            minheap.offer(num);
        }
    }

    public List<Integer> topk() {
        // 将队列中的数存到数组中
        Iterator it = minheap.iterator();
        List<Integer> result = new ArrayList<Integer>();
        while (it.hasNext()) {
            result.add((Integer) it.next());
        }
        // 调用数组排序法后返回
        Collections.sort(result, Collections.reverseOrder());
        return result;
    }
}

数组中的第K个最大元素

在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 2:

输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4

我的第一个想法:暴力法

    public int findKthLargest(int[] nums, int k) {
        Queue<Integer> que = new PriorityQueue<>();
        for(int num : nums) {
            if(que.size() < k) {
                que.offer(num);
            } else {
                if(que.peek() < num) {
                    que.poll();
                    que.offer(num);
                }
            }
        }
        return que.peek();
    }
这里举个无关的算法:

使用快速排序,思路极其简单:

  1. 首先对数组进行快速排序
  2. 最后返回第 k 个数即可
快速排序

具体实现:

    public int kthLargestElement(int k, int[] nums) {
        if (nums == null || nums.length == 0 || k < 1 || k > nums.length){
            return -1;
        }
        return partition(nums, 0, nums.length - 1, nums.length - k);
    }

    private int partition(int[] nums, int start, int end, int k) {
        if (start >= end) {
            return nums[k];
        }
        
        int left = start, right = end;
        int pivot = nums[(start + end) / 2];
        
        while (left <= right) {
            while (left <= right && nums[left] < pivot) {
                left++;
            }
            while (left <= right && nums[right] > pivot) {
                right--;
            }
            if (left <= right) {
                swap(nums, left, right);
                left++;
                right--;
            }
        }
        
        if (k <= right) {
            return partition(nums, start, right, k);
        }
        if (k >= left) {
            return partition(nums, left, end, k);
        }
        return nums[k];
    }    
    
    private void swap(int[] nums, int i, int j) {
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }





Attention

为了提高文章质量,防止冗长乏味

下一部分算法题

  • 本片文章篇幅总结越长。我一直觉得,一片过长的文章,就像一场超长的 会议/课堂,体验很不好,所以打算再开一篇文章来总结其余的考点

  • 在后续文章中,我将继续针对链表 队列 动态规划 矩阵 位运算 等近百种,面试高频算法题,及其图文解析 + 教学视频 + 范例代码,进行深入剖析有兴趣可以继续关注 _yuanhao 的编程世界

  • 不求快,只求优质,每篇文章将以 2 ~ 3 天的周期进行更新,力求保持高质量输出




相关文章


🔥 面试必备:高频算法题汇总「图文解析 + 教学视频 + 范例代码」必问之 链表 + 栈 + 队列 部分!🔥
🔥 面试必备:高频算法题汇总「图文解析 + 教学视频 + 范例代码」排序 + 二叉树 部分!🔥
Android 图片压缩策略详解,有效解决 Android 程序 OOM
Android 让你的 Room 搭上 RxJava 的顺风车 从重复的代码中解脱出来
ViewModel 和 ViewModelProvider.Factory:ViewModel 的创建者

欢迎关注_yuanhao的简书!





为了方便大家跟进学习,我在 GitHub 建立了一个仓库

仓库地址:超级干货!精心归纳视频、归类、总结,各位路过的老铁支持一下!给个 Star !

请点赞!因为你的鼓励是我写作的最大动力!

学Android
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容

  • 堆是一棵满足一定性质的二叉树,具体的讲堆具有如下性质:父节点的键值总是不大于它的孩子节点的键值(小顶堆), 堆可以...
    9527Roy阅读 625评论 0 0
  • 动态规划 111. 爬楼梯思路类似斐波那契数列注意考虑第 0 阶的特殊情况 272. 爬楼梯 II思路类似上题,只...
    6默默Welsh阅读 2,428评论 0 1
  • 前言 二分查找作为程序员的一项基本技能,是面试官最常使用来考察程序员基本素质的算法之一,也是解决很多查找类题目的常...
    Jesse1995阅读 2,192评论 0 0
  • 原文链接: 点这里更多内容就在我的个人博客 BlackBlog.tech 欢迎关注!谢谢大家! 本文源自LeetC...
    BlackBlog__阅读 3,257评论 2 13
  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,766评论 0 13