在Alexnet论文当中,提到label-preserving transformations,这是一种减少过拟合的方式。也就是在不影响图像标签的前提下,对图片进行变换,以达到数据增强的目的。通过这种方式增大我们的数据集,来减少过拟合。
论文中介绍了两种数据增强方式:
1#
第一种数据增强方式包括产生图像变换和水平翻转。我们从256×256图像上通过随机提取224 × 224的图像块实现了这种方式,然后在这些提取的图像块上进行训练。这通过一个2048因子增大了我们的训练集,尽管最终的训练样本是高度相关的。没有这个方案,我们的网络会有大量的过拟合,这会迫使我们使用更小的网络。在测试时,网络会提取5个224 × 224的图像块(四个角上的图像块和中心的图像块)和它们的水平翻转(因此总共10个图像块)进行预测,然后对网络在10个图像块上的softmax层进行平均。[2]
2#
第二种数据增强方式包括改变训练图像的RGB通道的强度。具体地,我们在整个ImageNet训练集上对RGB像素值集合执行PCA。对于每幅训练图像,我们加上多倍找到的主成分,大小成正比的对应特征值乘以一个随机变量,随机变量通过均值为0,标准差为0.1的高斯分布得到。因此对于每幅RGB图像像素,我们加上下面的数量:
,分别是RGB像素值3 × 3协方差矩阵的第个特征向量和特征值,是前面提到的随机变量。对于某个训练图像的所有像素,每个只获取一次,直到图像进行下一次训练时才重新获取。这个方案近似抓住了自然图像的一个重要特性,即光照的颜色和强度发生变化时,目标身份是不变的。这个方案减少了top 1错误率1%以上。[2]
Reference:
[1] https://www.cnblogs.com/RyanXing/p/9813602.html
[2] AlexNet论文翻译——中英文对照