三招提升数据不平衡模型的性能(附python代码)

对于深度学习而言,数据集非常重要,但在实际项目中,或多或少会碰见数据不平衡问题。什么是数据不平衡呢?举例来说,现在有一个任务是判断西瓜是否成熟,这是一个二分类问题——西瓜是生的还是熟的,该任务的数据集由两部分数据组成,成熟西瓜与生西瓜,假设生西瓜的样本数量远远大于成熟西瓜样本的数量,针对这样的数据集训练出来的算法“偏向”于识别新样本为生西瓜,存心让你买不到甜的西瓜以解夏天之苦,这就是一个数据不平衡问题。

针对数据不平衡问题有相应的处理办法,比如对多数样本进行采样使得其样本数量级与少样本数相近,或者是对少数样本重复使用等。最近恰好在面试中遇到一个数据不平衡问题,这也是面试中经常会出现的问题之一,现向读者分享此次解决问题的心得。

数据集

训练数据中有三个标签,分别标记为[1、2、3],这意味着该问题是一个多分类问题。训练数据集有17个特征以及38829个独立数据点。而在测试数据中,有16个没有标签的特征和16641个数据点。该训练数据集非常不平衡,大部分数据是1类(95%),而2类和3类分别有3.0%和0.87%的数据,如下图所示。

算法

经过初步观察,决定采用随机森林(RF)算法,因为它优于支持向量机、Xgboost以及LightGBM算法。在这个项目中选择RF还有几个原因:

机森林对过拟合具有很强的鲁棒性;

参数化仍然非常直观;

在这个项目中,有许多成功的用例将随机森林算法用于高度不平衡的数据集;

个人有先前的算法实施经验;

为了找到最佳参数,使用scikit-sklearn实现的GridSearchCV对指定的参数值执行网格搜索,更多细节可以在本人的Github上找到。

为了处理数据不平衡问题,使用了以下三种技术:

A.使用集成交叉验证(CV):

在这个项目中,使用交叉验证来验证模型的鲁棒性。整个数据集被分成五个子集。在每个交叉验证中,使用其中的四个子集用于训练,剩余的子集用于验证模型,此外模型还对测试数据进行了预测。在交叉验证结束时,会得到五个测试预测概率。最后,对所有类别的概率取平均值。模型的训练表现稳定,每个交叉验证上具有稳定的召回率和f1分数。这项技术也帮助我在Kaggle比赛中取得了很好的成绩(前1%)。以下部分代码片段显示了集成交叉验证的实现:

B.设置类别权重/重要性:

代价敏感学习是使随机森林更适合从非常不平衡的数据中学习的方法之一。随机森林有倾向于偏向大多数类别。因此,对少数群体错误分类施加昂贵的惩罚可能是有作用的。由于这种技术可以改善模型性能,所以我给少数群体分配了很高的权重(即更高的错误分类成本)。然后将类别权重合并到随机森林算法中。我根据类别1中数据集的数量与其它数据集的数量之间的比率来确定类别权重。例如,类别1和类别3数据集的数目之间的比率约为110,而类别1和类别2的比例约为26。现在我稍微对数量进行修改以改善模型的性能,以下代码片段显示了不同类权重的实现:

C.过大预测标签而不是过小预测(Over-Predict a Label than Under-Predict):

这项技术是可选的,通过实践发现,这种方法对提高少数类别的表现非常有效。简而言之,如果将模型错误分类为类别3,则该技术能最大限度地惩罚该模型,对于类别2和类别1惩罚力度稍差一些。 为了实施该方法,我改变了每个类别的概率阈值,将类别3、类别2和类别1的概率设置为递增顺序(即,P3= 0.25,P2= 0.35,P1= 0.50),以便模型被迫过度预测类别。该算法的详细实现可以在Github上找到。

最终结果

以下结果表明,上述三种技术如何帮助改善模型性能:

1.使用集成交叉验证的结果:

2.使用集成交叉验证+类别权重的结果:

3.使用集成交叉验证+类别权重+过大预测标签的结果:

结论

由于在实施过大预测技术方面的经验很少,因此最初的时候处理起来非常棘手。但是,研究该问题有助于提升我解决问题的能力。对于每个任务而言,起初可能确实是陌生的,这个时候不要害怕,一次次尝试就好。由于时间的限制(48小时),无法将精力分散于模型的微调以及特征工程,存在改进的地方还有很多,比如删除不必要的功能并添加一些额外功能。此外,也尝试过LightGBM和XgBoost算法,但在实践过程中发现,随机森林的效果优于这两个算法。在后面的研究中,可以进一步尝试一些其他算法,比如神经网络、稀疏编码等。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容

  • 机器学习术语表 本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。 A A/B 测试 (...
    yalesaleng阅读 1,968评论 0 11
  • 首页 资讯 文章 资源 小组 相亲 登录 注册 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他...
    Helen_Cat阅读 3,878评论 1 10
  • 以西瓜书为主线,以其他书籍作为参考进行补充,例如《统计学习方法》,《PRML》等 第一章 绪论 1.2 基本术语 ...
    danielAck阅读 4,529评论 0 6
  • 蒙蒙细雨拍打着我的脸庞,美好的一天从现在开始。静谧的城市,清凉的夏风,银丝般的夏雨,让这个夏天不在狂热起来。 又是...
    魅力小生lu阅读 125评论 0 0
  • 在很多家长看到一个0到6岁的孩子拿到一个把剪刀第一反应会是什么样子的尤其是女性往往会快给孩子拿过来不让他玩,但是把...
    阙玉玲阅读 152评论 0 1