粗糙集相对属性约简python代码实现

在前一段时间根据网上的代码资料,又根据实际自己项目需求修改了最后的代码。
1.为了简化计算数据难度,将一个大的数据集切割为多个小的数据集进行计算,可以使数据计算时间大大降低。(未分割时,2w行数据本人笔记本跑数据跑了9h,切割后计算计算时间为2-3min,中间的循环嵌套太多了的原因)
2.为了使数据更有代表性,将一个大的数据集切割为多个小的数据集,然后相加得到各个数据集一起得到的数据,一定程度上降低干扰。

记录一下想法:有粗糙集属性约简想文末链接中介绍的,通过的比对上下近似集。但我们这里使用的相对属性约简,有些不一样,但核心思想差不多。这里在人群中把选择相同的人群分出来,发现分出来的集合结果就是R=R1∩R2∩···Rn。R就是整个的知识系统。问题:这里比对每一个人完全相同的情况,实际上如果属性很多,很难找到完全选择一样的人,解决方法:这里是比对每一个人所有选择一样时才放入一个集合,我们可以选择假如说100个属性,我们比对如果对象有95个或者其他数量的属性选择一样时,就可以认定他们实际上选择差不多。但如果是利用R1∩R2就很难做这种改变了,体现了使用这种方法的优越性。

# _*_coding:utf-8 _*_
#@Time    :2018/11/28 下午7:21
#@Author  :we2swing
#@FileName: Rough_Set.py
# -*- coding:UTF-8 -*-

import pandas as pd
import time

def basic_set(df):
    basic = {}
    for i in df.drop_duplicates().values.tolist():
        basic[str(i)] = []
        for j, k in enumerate(df.values.tolist()):
            if k == i:
                basic[str(i)].append(j)

    return basic

def rough_set(data):
    data = data.dropna(axis=0, how='any')
    x_data = data.drop(['judge'], axis=1)
    y_data = data.loc[:, 'judge']
    # 决策属性基本集
    y_basic_set = sorted([v for k, v in basic_set(y_data).items()])
    # 条件属性基本集
    x_basic_set = sorted([v for k, v in basic_set(x_data).items()])
    pos = []
    for i in x_basic_set:
        for j in y_basic_set:
            if set(i).issubset(j):
                pos.append(i)
    pos.sort()
    print("x_basic_set",x_basic_set)
    print("y_basic_set",y_basic_set)
    print ('y的x正域Pos_x(y): ',pos)
    r_x_y = len([k for i in pos for k in i]) / (len(data))
    # print('依赖度r_x_(y):', r_x_y)

    # 探索条件属性中不可省关系
    u = locals()
    pos_va = locals()
    r = locals()
    columns_num = list(range(len(x_data.columns)))
    # 收集核
    imp_core = []
    # 收集属性重要性
    imp_attr = []
    for i in columns_num:
        c = columns_num.copy()
        c.remove(i)
        u = data.iloc[:, c]
        u = sorted([v for k, v in basic_set(u).items()])
        pos_va = []
        for k in u:
            for j in y_basic_set:
                if set(k).issubset(j):
                    pos_va.append(k)
        if sorted(pos_va) != pos:
            imp_core.append(i)
        r = len(sorted(pos_va)) / len(data)
        r_diff = round(r_x_y - r, 4)

        imp_attr.append(r_diff)

    dict_imp = {}
    for o, p in enumerate(imp_attr):
        dict_imp[data.columns[o]] = p

    result = dict_imp
    sorted_dict_imp = sorted(dict_imp, key=lambda x: dict_imp[x], reverse=True)
    sorted_dict_imp = list(map(lambda x: {x: dict_imp[x]}, sorted_dict_imp))
    imp_core = [data.columns[i] for i in imp_core]

    print('属性重要度为:', sorted_dict_imp)
    # print('核属性为:', imp_core)#核属性仅供参考

    return result

def deal(data):
    #获取数据长度
    len = data.iloc[:,0].size
    #将数据划分
    if len%500 != 0:
        if len > 500:
            num = len//500+1
        else:
            num = 1
    else:
        if len > 500:
            num = int(len/500)
        else:
            num = 1
    arr = [[]]*num

    count = 0
    for i in arr:
        #如果数少于500或者最后一部分数少于500,则放入一个由数长决定的数组
        if num == 1:
            arr[count] = data.iloc[0:len]#取500开始,取
        elif count == num - 1:
            arr[count] = data.iloc[500 * count:len]
        else:
            arr[count] = data.iloc[500 * count:(count + 1) * 500]
        count = count + 1
    sorted_dict_imp = [[]]*num
    total = [0]*27
    title = ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11','C12','C13','C14','C15','C16','C17','C18','C19','C20','C21','C22','C23','C24','C25','C26','C27']
    # total = [0] * 16
    # title = ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11', 'C12', 'C13', 'C14', 'C15', 'C16']
    count = 0
    for i in arr:
        print('-------------------------------------第%d个数据集数据-----------------------------------------'%(count+1))
        sorted_dict_imp[count] = rough_set(i)
        count = count + 1
    count1 = 0
    # 将dict的key为C1-Cn的value存入total中保存,并且相加
    for i in sorted_dict_imp:
        count = 0
        if count1 == 0:
            for j in title:
                total[count] = i.get(j)
                count = count + 1
        else:
            for z in title:
                total[count] = i.get(z) + total[count]
                count = count + 1
        count1 = count1 + 1
    #输出最终C1-Cn的结果
    count = 0
    for i in title:
        print(i,':',round(total[count],4))
        count = count + 1


def main():
    time1 = time.time()
    #读取文件数据
    data = pd.read_csv(filepath_or_buffer='/Users/we2swing/Desktop/data1.csv')
    deal(data)
    time2 = time.time()
    print(time2-time1)


if __name__ == '__main__':
    main()

rough_set是属性约简函数,要明白该函数的可以参考我的一篇转载文章传送门
judge列为决策属性列 C1-C27为关系属性

data1.csv

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容