ForkJoin分析

一、ForkJoin

ForkJoin是由JDK1.7后提供多线并发处理框架。ForkJoin的框架的基本思想是分而治之。什么是分而治之?分而治之就是将一个复杂的计算,按照设定的阈值进行分解成多个计算,然后将各个计算结果进行汇总。相应的ForkJoin将复杂的计算当做一个任务。而分解的多个计算则是当做一个子任务。


image.png

二、ForkJoin的使用

  • 一、 创建Task
    使用ForkJoin框架,需要创建一个ForkJoin的任务,而ForkJoinTask是一个抽象类,我们不需要去继承ForkJoinTask进行使用。因为ForkJoin框架为我们提供了RecursiveAction和RecursiveTask。我们只需要继承ForkJoin为我们提供的抽象类的其中一个并且实现compute方法。
private static class SumTask extends RecursiveTask<Integer> {

        private  int threshold ;
        private static final int segmentation = 10;

        private int[] src;

        private int fromIndex;
        private int toIndex;

        public SumTask(int formIndex,int toIndex,int[] src){
            this.fromIndex = formIndex;
            this.toIndex = toIndex;
            this.src = src;
            this.threshold = src.length/segmentation;
        }

        @Override
        protected Integer compute() {
            if((toIndex - fromIndex)<threshold ){
                int count = 0;
                System.out.println(" from index = "+fromIndex
                        +" toIndex="+toIndex);
                for(int i = fromIndex;i<=toIndex;i++){
                  count+=src[i];
                }
                return count;
            }else{
                int mid = (fromIndex+toIndex)/2;
                SumTask left =  new SumTask(fromIndex,mid,src);
                SumTask right = new SumTask(mid+1,toIndex,src);
                invokeAll(left,right);
                return left.join()+right.join();
            }
        }
    }
  • 二、使用ForkJoinPool进行执行
    task要通过ForkJoinPool来执行,分割的子任务也会添加到当前工作线程的双端队列中,
    进入队列的头部。当一个工作线程中没有任务时,会从其他工作线程的队列尾部获取一个任务(工作窃取)。
 public static void main(String[] args) {
            int[]  array = MakeArray.createIntArray();
        ForkJoinPool forkJoinPool= new ForkJoinPool();
        SumTask sumTask  = new SumTask(0,array.length-1,array);

        long start = System.currentTimeMillis();

        forkJoinPool.invoke(sumTask);
        System.out.println("The count is "+sumTask.join()
                +" spend time:"+(System.currentTimeMillis()-start)+"ms");

    }

三、RecursiveTask和RecursiveAction区别

  • RecursiveTask
    通过源码的查看我们可以发现RecursiveTask在进行exec之后会使用一个result的变量进行接受返回的结果。而result返回结果类型是通过泛型进行传入。也就是说RecursiveTask执行后是有返回结果。
public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
    private static final long serialVersionUID = 5232453952276485270L;

    /**
     * The result of the computation.
     */
    V result;

    /**
     * The main computation performed by this task.
     * @return the result of the computation
     */
    protected abstract V compute();

    public final V getRawResult() {
        return result;
    }

    protected final void setRawResult(V value) {
        result = value;
    }

    /**
     * Implements execution conventions for RecursiveTask.
     */
    protected final boolean exec() {
        result = compute();
        return true;
    }

}
  • RecursiveAction
    RecursiveAction在exec后是不会保存返回结果,因此RecursiveAction与RecursiveTask区别在与RecursiveTask是有返回结果而RecursiveAction是没有返回结果。
public abstract class RecursiveAction extends ForkJoinTask<Void> {
    private static final long serialVersionUID = 5232453952276485070L;

    /**
     * The main computation performed by this task.
     */
    protected abstract void compute();

    /**
     * Always returns {@code null}.
     *
     * @return {@code null} always
     */
    public final Void getRawResult() { return null; }

    /**
     * Requires null completion value.
     */
    protected final void setRawResult(Void mustBeNull) { }

    /**
     * Implements execution conventions for RecursiveActions.
     */
    protected final boolean exec() {
        compute();
        return true;
    }

}

ForkJoinTask是RecursiveAction与RecursiveTask的父类, ForkJoinTask中使用了模板模式进行设计
,将ForkJoinTask的执行相关的代码进行隐藏,通过提供抽象类暴露用户的实际业务处理。

三、ForJoin注意点

使用ForkJoin将相同的计算任务通过多线程的进行执行。从而能提高数据的计算速度。在google的中的大数据处理框架mapreduce就通过类似ForkJoin的思想。通过多线程提高大数据的处理。但是我们需要注意:

  • 使用这种多线程带来的数据共享问题,在处理结果的合并的时候如果涉及到数据共享的问题,我们尽可能使用JDK为我们提供的并发容器。
  • 在使用JVM的时候我们要考虑OOM的问题,如果我们的任务处理时间非常耗时,并且处理的数据非常大的时候。会造成OOM。
  • ForkJoin也是通过多线程的方式进行处理任务。那么我们不得不考虑是否应该使用ForkJoin。因为当数据量不是特别大的时候,我们没有必要使用ForkJoin。因为多线程会涉及到上下文的切换。所以数据量不大的时候使用串行比使用多线程快。

四、ForkJoin工作窃取(work-stealing)

为什么ForkJoin会存在工作窃取呢?因为我们将任务进行分解成多个子任务的时候。每个子任务的处理时间都不一样。例如分别有子任务A\B。如果子任务A的1ms的时候已经执行,子任务B还在执行。那么如果我们子任务A的线程等待子任务B完毕后在进行汇总,那么子任务A线程就会在浪费执行时间,最终的执行时间就以最耗时的子任务为准。而如果我们的子任务A执行完毕后,处理子任务B的任务,并且执行完毕后将任务归还给子任务B。这样就可以提高执行效率。而这种就是工作窃取。

五、ForkJoin排序

public class SortForkJoin {
    /**
     * 数组排序
     *
     * @param arry
     * @return
     */
    public static int[] sort(int[] arry) {
        if (arry.length == 0) return arry;
        for (int index = 0; index < arry.length - 1; index++) {
            int pre_index = index;
            int currentValue = arry[index + 1];
            while (pre_index >= 0 && arry[pre_index] > currentValue) {
                arry[pre_index + 1] = arry[pre_index];
                pre_index--;
            }
            arry[pre_index + 1] = currentValue;
        }
        return arry;
    }

    /**
     * 组合
     *
     * @param left
     * @param right
     * @return
     */
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        for (int resultIndex = 0, leftIndex = 0, rightIndex = 0; resultIndex < result.length; resultIndex++) {
            if (leftIndex >= left.length) {
                result[resultIndex] = right[rightIndex++];
            } else if (rightIndex >= right.length) {
                result[resultIndex] = left[leftIndex++];
            } else if (left[leftIndex] > right[rightIndex]) {
                result[resultIndex] = right[rightIndex++];
            } else {
                result[resultIndex] = left[leftIndex++];
            }
        }
        return result;
    }


     static  class SortTask extends RecursiveTask<int[]> {
        private int threshold;
        private int start;
        private int end;
        private int segmentation ;
        private int[] src;

        public SortTask(int[] src,int start,int end,int segmentation){
            this.src = src;
            this.start = start;
            this.end = end;
            this.threshold = src.length/segmentation;
            this.segmentation = segmentation;
        }
        @Override
        protected int[] compute() {
            if((end - start) <threshold){
               int mid =  (end-start)/2;
               SortTask leftTask = new SortTask(src,start,mid,segmentation);
               SortTask rightTask = new SortTask(src,mid+1,end,segmentation);
               invokeAll(leftTask,rightTask);
               return SortForkJoin.merge(leftTask.join(),rightTask.join());
            }else{
               return  SortForkJoin.sort(src);
            }
        }
    }

    @Test
    public void test() {
        int[]  array = MakeArray.createIntArray();
        ForkJoinPool forkJoinPool= new ForkJoinPool();
        SortTask sortTask =new SortTask(array,0,array.length-1,1000);
        long start = System.currentTimeMillis();
        forkJoinPool.execute(sortTask);
        System.out.println(
                " spend time:"+(System.currentTimeMillis()-start)+"ms");
    }

}


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,000评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,745评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,561评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,782评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,798评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,394评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,952评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,852评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,409评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,483评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,615评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,303评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,979评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,470评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,571评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,041评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,630评论 2 359