sussman-talk

People in Different Cultures

It's hard to communicate with Greek people, unless you have learned Greek language, which, however, is impossible.

Mathematicians have developed a culture, a whole terribly (see below) specified language to express (write down) their ideas. And if you want to impress in your mind what's the idea behind an expression, you have to work hard on learning their language. Whereas, this language is terribly designed, so that unnecessary obstacles lie along the path of you learning.

Newton's Law:

Traditionally, it's $- G M r^{-3} \vec{r} = \ddot{r}$. Whereas, it's not clear what physical quantities the notations represent. You have to say, $\vec{r}$ is the trajectory of a particle in gravitational field caused by a point-mass $M$, thus $\vec{r} (t)$. It would be somehow automatically declared if it is re-written as $$-\frac{G M \vec{r} (t)}{r^3 (t)} = \frac{\mathd^2 \vec{r}}{\mathd t^2} (t)$$.

Leibniz's Rule:

Let $e (x, y) = f (g (x, y), h (x, y))$. We want $\partial e / \partial x (x,y)$. Denote $u = g (x, y)$ and $v = h (x, y)$. Then we write. $$\frac{\partial f (g (x, y), h (x, y))}{\partial x} = \frac{\partial f (u, v)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f (u, v)}{\partial v} \frac{\partial v}{\partial x}$$. Then shortly and terribly, $$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}$$.

Note that $f$ means different things on the two sides!

The correct way of expressing is $$\frac{\partial f (g (x, y), h (x, y))}{\partial x} = \partial_1 f (u, v) \big|{u = g (x, y), v = h (x, y)} \partial_1 g (x, y) + \partial_2 f (u, v) \big|{u = g (x, y), v = h (x, y)} \partial_1 h (x, y)}$$.

Lagrangian Equation:

Traditionally, Lagrangian equation is expressed as $$\frac{d}{d t} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0$$, which seems that $L: R \times R \times R \mapto R$, where one of the $R$ is for $t$. Thus, this expression has type violation! Indeed, the general expression of Lagrangian is $L(x, v) = (1/2) v^2 + V(x)$, for some $V$, which is $L: R^2 \mapto R$.

Gamma: path-space --> domain of Lagrangian
       function on R --> (function on R)^2
(def ((Gamma path) t)
     (up (path t) ((D path) t)))

lagrangian-eq: path-space --> domain of Lagrangian --> R
               function on R --> R
(def ((lagrangian-eq lagrangian) path)
     (minus (D (compose ((partial 2) lagrangian)
                        (Gamma path)))
            (compose ((partial 1) lagrangian)
                     (Gamma path))))

where D is the (Mathematica-l) derivative operation, such as

D (x^n) = n x^(n-1)

Thus we see, lagrangian-eq is a functional. This is manifest in (def ((lagrangian-eq lagrangian) path) ...). For instance, harmonic oscillator:

lagrangian (x, v) = (1/2) v^2 - (1/2) x^2

Things become declared and clarified in these expressions via programme.

Expressing GR via Programme.

  • As expressing via programmes, the point is not making GR simple, but making it clear. It is manifest how things is manipulated, in each step.

  • And demanding that the code can run on computer forces the expression be correct.

The Reason Why Programming that Makes It Better

  • Originally, for convenience of manipulation by hand, formulae are written abbreviatedly. This abbreviation makes algebric calculation fast, freeing our time from doing dull algebra and then focus more attention unto the meaning of the expressions, and getting rid of any misleading on them. However, this abbreviation carries two sides. It blocks us reading off the meaning from the abbreviated, thus quite non-straight-forward, expressions.

  • Then, programming saves us, as Leibniz originally dreamed. Verily, it sweeps the dull algebric calculation out of our mind and leave the non-abbreviated expression understandable.

T.B.C.


PS: 以前知道“简书”对 Markdown 的支持很糟糕。比如:
This is a regular paragraph.

<table>
<tr>
<td>Foo</td>
</tr>
</table>

This is another regular paragraph.
(这段是从这里直接复制过来的。)现在看来它完全不支持 LaTeX,缩进也有问题。“简书”果然很简陋。


categories: programming

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容

  • 月光美丽 无法拒绝 镜中之花 总要破碎 请你记得 美好生命 有自由 更有赞美 尽管伸手 仰面索求
    再看长安花阅读 217评论 0 0
  • 今天给大家推荐一本充满艺术性和趣味性的“手指画”书籍——《Let's make some great finger...
    Art一丁点阅读 850评论 3 12
  • 时光匆匆,似乎应该要珍惜时光。而写作往往是很耗费时间的。 但其实,我做过的最有意义的事,是在多年以后,看着自己多年...
    驳悖阅读 238评论 0 0