代码随想录算法训练营第40天 | 198.打家劫舍、213.打家劫舍II、337.打家劫舍III

第九章 动态规划part07

198.打家劫舍

文章讲解

思路

  • 当前房屋偷与不偷取决于前一个房屋和前两个房屋是否被偷了。所以,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。
  1. 确定dp数组(dp table)以及下标的含义
    dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
  2. 确定递推公式
    决定dp[i]的因素就是第i房间偷还是不偷。
    如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
    如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房。
    然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
  3. dp数组如何初始化
    从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]
    从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);
  4. 确定遍历顺序
    dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历
  5. 举例推导dp数组
    以示例二,输入[2,7,9,3,1]为例。


    image.png
// 动态规划
class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0) return 0;
        if (nums.length == 1) return nums[0];

        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        dp[1] = Math.max(dp[0], nums[1]);
        for (int i = 2; i < nums.length; i++) {
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
        }

        return dp[nums.length - 1];
    }
}
class Solution {
    public int rob(int[] nums) {
        //使用滚动数组进行优化
        if(nums.length == 1) return nums[0];
        int[] dp = new int[2];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        int res = 0;
        for(int i = 2; i < nums.length; i++){
            res = Math.max(dp[0] + nums[i], dp[1]);
            dp[0] = dp[1];
            dp[1] = res;
        }
        return dp[1];

    }
}

213.打家劫舍II

文章讲解

思路

  • 和198的区别是成环了
    • 对于一个数组,成环的话主要有如下三种情况:
      • 情况一:考虑不包含首尾元素
      • 情况二:考虑包含首元素,不包含尾元素
      • 情况三:考虑包含尾元素,不包含首元素
    • 而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。
class Solution {
    public int rob(int[] nums) {
        if(nums.length == 0) return 0;
        if(nums.length == 1) return nums[0];
        int len = nums.length;
        int result1 = robRange(nums, 0, len - 2); //情况二
        int result2 = robRange(nums, 1, len - 1); //情况三
        return Math.max(result1, result2);
    }
    private int robRange(int[] nums, int start, int end) {
        if(end == start) return nums[start];
        //使用滚动数组进行优化
        if(nums.length == 1) return nums[0];
        int[] dp = new int[2];
        dp[0] = nums[start];
        dp[1] = Math.max(nums[start], nums[start + 1]);
        int res = 0;
        for(int i = start + 2; i <= end; i++){  //注意这个循环范围
        // i从start + 2开始,因为我们已经处理了前两间房子(dp[0]和dp[1]),
        // 接下来的房子从start + 2开始。i <= end:我们需要包括end位置的房子,因此使用<=。
            res = Math.max(dp[0] + nums[i], dp[1]);
            dp[0] = dp[1];
            dp[1] = res;
        }
        return dp[1];

    }
}

为什么不能使用for(int i = 2; i < nums.length; i++)
这种写法没有考虑不同起始和结束范围的子问题,只适用于线性数组,无法正确处理环形数组的问题。我们的目标是分别处理不包含最后一间和不包含第一间的情况,因此需要灵活指定范围。
如果将循环写成 for(int i = 2; i < nums.length; i++),这种写法会从数组的第三个元素开始遍历到最后一个元素,不能达成第一个房子和最后一个房子不能同时被抢劫的约束条件。


337.打家劫舍III

文章讲解

思路

  • 本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
  • 这道题目算是树形dp的入门题目,因为是在树上进行状态转移。结合二叉树递归三部曲和动规五部曲。
  1. 确定递归函数的参数和返回值
    这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组,0:不偷,1:偷
private int[] robTree(TreeNode cur)

这里的返回数组就是dp数组。
所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

  1. 确定终止条件
    在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
if (cur == null) return new int[]{0, 0};

这也相当于dp数组的初始化

  1. 确定遍历顺序
    首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。
    通过递归左节点,得到左节点偷与不偷的金钱。
    通过递归右节点,得到右节点偷与不偷的金钱。
int[] left = robTree(cur.left);
int[] right = robTree(cur.right);
  1. 确定单层递归的逻辑
    如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)
    如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
    最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
// 偷cur,那么就不能偷左右节点。
// left[0] + right[0] 是计算从当前节点的左子树和右子树返回的结果中,
// 不偷左子节点和右子节点时的最大金额之和。
int val1 = cur.val + left[0] + right[0];
// 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
int val2 = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
return new int[]{val2, val1};
  1. 举例推导dp数组
    以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)


    image.png
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int rob(TreeNode root) {
        int[] result = robTree(root);
        return Math.max(result[0], result[1]);
    }
    // 长度为2的数组,0:不偷,1:偷
    private int[] robTree(TreeNode cur) {
        if(cur == null) return new int[]{0, 0};
        int[] left = robTree(cur.left);
        int[] right = robTree(cur.right);
        int val1 = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        int val2 = cur.val + left[0] + right[0];
        return new int[]{val1, val2};
    }
}
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容