StreamingPro 再次支持 Structured Streaming

前言

之前已经写过一篇文章,StreamingPro 支持Spark Structured Streaming,不过当时只是玩票性质的,因为对Spark 2.0+ 版本其实也只是尝试性质的,重点还是放在了spark 1.6 系列的。不过时间在推移,Spark 2.0+ 版本还是大势所趋。所以这一版对底层做了很大的重构,StreamingPro目前支持Flink,Spark 1.6+, Spark 2.0+ 三个引擎了。

准备工作

下载streamingpro for spark 2.0的包,然后下载spark 2.1 的安装包。
你也可以在 streamingpro目录 找到spark 1.6+ 或者 flink的版本。最新的大体会按如下格式统一格式了:

streamingpro-spark-0.4.14-SNAPSHOT.jar  适配  spark 1.6+,scala 2.10
streamingpro-spark-2.0-0.4.14-SNAPSHOT.jar  适配  spark 2.0+,scala 2.11
streamingpro.flink-0.4.14-SNAPSHOT-online-1.2.0.jar 适配 flink 1.2.0, scala 2.10

测试例子

写一个json文件ss.json,内容如下:

{
  "scalamaptojson": {
    "desc": "测试",
    "strategy": "spark",
    "algorithm": [],
    "ref": [
    ],
    "compositor": [
      {
        "name": "ss.sources",
        "params": [
          {
            "format": "socket",
            "outputTable": "test",
            "port":"9999",
            "host":"localhost",
            "path": "-"
          },
          {
            "format": "com.databricks.spark.csv",
            "outputTable": "sample",
            "header":"true",
            "path": "/Users/allwefantasy/streamingpro/sample.csv"
          }
        ]
      },
      {
        "name": "ss.sql",
        "params": [
          {
            "sql": "select city from test left join sample on test.value == sample.name",
            "outputTableName": "test3"
          }
        ]
      },
      {
        "name": "ss.outputs",
        "params": [
          {
            "mode": "append",
            "format": "console",
            "inputTableName": "test3",
            "path": "-"
          }
        ]
      }
    ],
    "configParams": {
    }
  }
}

大体是一个socket源,一个sample文件。socket源是流式的,sample文件则是批处理的。sample.csv内容如下:

id,name,city,age
1,david,shenzhen,31
2,eason,shenzhen,27
3,jarry,wuhan,35

然后你在终端执行 nc -lk 9999 就好了。

然后运行spark程序:

SHome=/Users/allwefantasy/streamingpro
./bin/spark-submit   --class streaming.core.StreamingApp \
--master local[2] \
--name test \
$SHome/streamingpro-spark-2.0-0.4.14-SNAPSHOT.jar    \
-streaming.name test    \
-streaming.platform spark_structrued_streaming \
-streaming.job.file.path file://$SHome/ss.json

在nc 那个终端输入比如eason ,然后回车,马上就可以看到spark终端接受到了数据。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容