胜率与薪资,球队是否有竞争性优势

讨论的问题:综合考虑胜率与薪资,OKA球队相比其他的球队是否有竞争性优势。
数据来源:http://seanlahman.com/files/database/lahman-csv_2014-02-14.zip
1、从网络上下载需要的CSV文档,这里采用request,stringIO,zipfile进行数据提取:

def getZIP(zipFileName):
    #以字节的方式请求
    r = requests.get(zipFileName).content
    #创建内存文件
    s = StringIO.StringIO(r)
    zf = zipfile.ZipFile(s,'r')
    return zf
url = 'http://seanlahman.com/files/database/lahman-csv_2014-02-14.zip'
zf = getZIP(url)

数据展示如下:

['SchoolsPlayers.csv', 'SeriesPost.csv', 'Teams.csv',       'TeamsFranchises.csv', 'TeamsHalf.csv', 'AllstarFull.csv', 'Appearances.csv', 'AwardsManagers.csv', 'AwardsPlayers.csv', 'AwardsShareManagers.csv', 'AwardsSharePlayers.csv', 'Batting.csv', 'BattingPost.csv', 'Fielding.csv', 'FieldingOF.csv', 'FieldingPost.csv', 'HallOfFame.csv', 'Managers.csv', 'ManagersHalf.csv', 'Master.csv', 'Pitching.csv', 'PitchingPost.csv', 'readme2013.txt', 'Salaries.csv', 'Schools.csv']

这里把需要的salaries和teams这两个CSV文件读取出来:

salaries = pd.read_csv(zf.open(tablenames[tablenames.index('Salaries.csv')]))
print salaries.head()
teams = pd.read_csv(zf.open(tablenames[tablenames.index('Teams.csv')]))
#这里只需要这几列
teams = teams[['yearID', 'teamID', 'W']]
print teams.head()
     yearID teamID lgID   playerID   salary
0    1985    BAL   AL    murraed02  1472819
1    1985    BAL   AL     lynnfr01  1090000
2    1985    BAL   AL    ripkeca01   800000
3    1985    BAL   AL     lacyle01   725000
4    1985    BAL   AL    flanami01   641667
   yearID teamID   W
0    1871    PH1  21
1    1871    CH1  19
2    1871    BS1  20
3    1871    WS3  15
4    1871    NY2  16

接下来计算各个队每年的总工资,并把两个列表合并起来,W代表胜场:

#一般情况下,聚合数据都需要唯一的分组键组成的索引,但也可以通过向groupby传入as_index=False以禁用该功能
totleSalaries = salaries.groupby(['yearID','teamID'],as_index=False).sum()
print totleSalaries.head()
#how="inner"指当左右两个对象存在不重合的键时,inner 代表交集;outer 代表并集;on指的是用于连接的列索引名称,如果没有指定且其他参数也未指定则以两个DataFrame的列名交集做为连接键
joined = pd.merge(totleSalaries, teams, how="inner", on=['yearID', 'teamID'])
print joined.head()
 yearID    teamID    salary
0    1985    ATL   14807000
1    1985    BAL   11560712
2    1985    BOS   10897560
3    1985    CAL   14427894
4    1985    CHA    9846178
   yearID teamID    salary   W
0    1985    ATL  14807000  66
1    1985    BAL  11560712  83
2    1985    BOS  10897560  81
3    1985    CAL  14427894  90
4    1985    CHA   9846178  85

接下来画出各个球队每年总的薪水和获胜次数的关系图,并标记处OKA这只球队:

teamName ='OAK'
years = np.arange(2000,2004)
for year in years:
    df = joined[joined['yearID'] == year]
    print df
    #画出薪资和胜场的散点图
    plt.scatter(df['salary'] / 1e6,df['W'])
    plt.title(str(year)+'年'+'胜场与薪资')
    plt.xlabel('总薪水(百万)')
    plt.ylabel('胜场')
    plt.xlim(0, 180)
    plt.ylim(30, 130)
    plt.grid()
    #标记出OKA球队
    plt.annotate(teamName,
                 xy=(df['salary'][df['teamID'] == teamName] / 1e6, df['W'][df['teamID'] == teamName]),
                 xytext=(-20, 20), textcoords='offset points', ha='right', va='bottom',
                 bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                 arrowprops=dict(arrowstyle='->', facecolor='black', connectionstyle='arc3,rad=0'))
    plt.show() 
image.png
image.png
image.png
image.png

可以看出OKA的在2000年到2004年间付出总薪水较少的情况下获得了比较好的胜利场数,接下来用回归分析证明这一点,并看看更长时间内的数据怎么样,算出各支球队的残差,就能知道是否如上述推论:

teamName = 'OAK'
years = np.arange(1999, 2014)
def Residual(year):
    residData = pd.DataFrame()
    df = joined[joined['yearID'] == year]
    #原始数据横坐标
    x_list = df['salary'].values / 1e6
    #纵坐标
    y_list = df['W'].values
    #最小二乘估计
    A = np.array([x_list, np.ones(len(x_list))])#构造系数矩阵
    y = y_list
    w = np.linalg.lstsq(A.T,y)[0] #求出斜率以及纵截距,w[0]斜率w[1]纵截距
    yhat = (w[0]*x_list+w[1]) # 回归线
    residData['teamID'] = df['teamID']
    residData[year] = y - yhat
    residData.index = residData['teamID']
    residData = residData.drop(residData.columns[0], axis=1)
    #print residData
    return residData
#将dataframe放入数组
Residuals = [Residual(year) for year in years]
#按照队名合并
Residual_df = reduce(lambda  left,right:pd.merge(left,right,how='outer',left_index=True, right_index=True),Residuals)
print Residual_df
Residual_df = Residual_df.T
Residual_df.plot(title = '各支球队的残差图', figsize = (15, 8),
               color=map(lambda x: 'blue' if x==teamName else 'gray',Residual_df.columns))
plt.xlabel('年')
plt.ylabel('残差')
plt.show()

这里主要在于如何将多个将dataframe拆分成多个小的dataframe并重新按照不重合的主键名合并。

image.png

如图可以看出,在2000年到2003年间,OKA球队偏移回归线较远,且残差为正,说明其能在付出较少薪水的情况下获得较好的成绩,特别是在2002与2003年,偏移最远,此时球队的性价比在联盟中应该是最高的。但在2004年后,残差往负的方向走,并持续多年,说明此时球队成绩不太好,但在2010年后有复苏的趋势。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容