数据分析:蛋白质质谱数据的差异检验

前言

上一节,我们通过对组间整体质谱数据分析后,发现NC和PC、PT的组间差异显著,那么具体到单个蛋白质水平的结果又是如何呢。

在单个蛋白质水平上做比较分析,我们可以使用limma包的函数进行分析。除了组间比较外,它还可以对某些可能潜在影响比较结果的因素如性别、年龄等进行校正处理(可以先期对组间临床表型进行组间差异比较,查看哪些指标是组间显著差异的,这些指标可能影响蛋白质的组间差异比较。它们应该作为协变量被校正掉).

除了使用基于线性模型的limma包外,还可以使用常用的t-test等,但默认情况下,我们会认为case和control组的数据都服从同一正态分布,具有相同的方差,这个时候我们会使用student-t test。可实际上,case和control组的分布可能不是同一个方差,我们这个时候应该选择Welch's t-test。

导入数据

library(dplyr)
library(tibble)
library(ggplot2)
library(convert)
library(limma)

# rm(list = ls())
options(stringsAsFactors = F)
options(future.globals.maxSize = 1000 * 1024^2)

subgrp <- c("NC", "PC", "PT")
grp.col <- c("#568875", "#73FAFC", "#EE853D")

ExprSet_LOG2Impute <- readRDS("Mass_Proteins_filtered_Normal_LOG2Impute.RDS")

Differential Expression Analysis

  1. 如果数据存在配对情况,则可设置pair=T。

  2. scale参数是针对counts数据设置的。

  3. future.apply是对并行计算设置的。

  4. eBayes的结果中logFC有时候让人很困惑,需要注意该结果是否的正确性,因此设置datCoe判断富集方向,也可以通过内置的pl图发现富集方向。

get_DiffProtein_limma <- function(dataset=ExprSet_LOG,
                               group_name=subgrp[1:2],
                               pair=FALSE,
                               scale=FALSE,
                               fc=1,
                               Pval=0.05){

  # dataset=ExprSet_LOG
  # group_name=subgrp[1:2]
  # pair=FALSE
  # scale=FALSE
  # fc=1
  # Pval=0.05
  
  pheno <- pData(dataset) %>%
    filter(SubGroup%in%group_name)
  pheno$SubGroup <- factor(as.character(pheno$SubGroup), levels = group_name)
  pheno$PID <- factor(as.character(pheno$PID))
  
  if(pair){
    # paired test 
    design <- model.matrix(~ pheno$SubGroup + pheno$PID)
    rownames(design) <- rownames(pheno)
    colnames(design) <- c("Intercept",
                          paste(group_col, collapse = "-"), 
                          as.character(unique(pheno$PID)[-1]))    
  }else{
    design <- model.matrix( ~ 0 + pheno$SubGroup)
    rownames(design) <- rownames(pheno)
    colnames(design) <- group_name
  }

  # show distribution
  edata <- as.matrix(exprs(dataset))
  exprSet <- edata[, colnames(edata)%in%rownames(pheno)]  
  boxplot(exprSet)
  plotDensities(exprSet)
  
  # Normalization: TMM
  if(scale){
    require(edgeR)
    DGEList <- edgeR::DGEList(
                        counts = exprSet, 
                        group = pheno$SubGroup) 
    exprSet_norm <- edgeR::calcNormFactors(DGEList, method = "TMM")
    plotMDS(exprSet_norm, col=as.numeric(pheno$SubGroup))
  }else{
    exprSet_norm <- exprSet
  }

  # linear fitting
  #limma_voom <- voom(exprSet_norm, design, plot = TRUE)
  fit <- lmFit(exprSet_norm, design)
  
  if(pair){
    # eBayes
    fit2 <- eBayes(fit)
    qqt(fit2$t, df = fit2$df.prior+fit2$df.residual, pch = 16, cex = 0.2)
    abline(0,1)
    
    # differential features
    diff_gene <- topTable(fit2, number = Inf, adjust.method = 'BH', coef = 2) %>%
      rownames_to_column("GeneID")
    
    # delta
    require(future.apply)
    plan(multiprocess, workers = 10)
    delta_value <- future_apply(exprSet, 1, function(x, y){
      # x = exprSet[1, ]
      # y = pheno
      dat <- data.frame(value=x, y) %>%
        arrange(PID, SubGroup) %>%
        dplyr::select(PID, SubGroup, value) 
      dat$SubGroup <- factor(dat$SubGroup, levels = group_name)
      
      dat_delta <- dat %>% group_by(PID, SubGroup) %>%
        summarise(mean_value=mean(value)) %>%   # mean or median???
        mutate(delta=dplyr::first(mean_value) - dplyr::last(mean_value)) %>%
        ungroup()
      
      delta <- mean(dat_delta$delta)
      return(delta)
      
    }, pheno) %>% data.frame() %>%
      setNames("Delta") %>%
      rownames_to_column("GeneID")
    # stopCluster(cl)
    
    # combine DEG and delta
    diff_gene_delta <- inner_join(diff_gene, delta_value, by = "GeneID")    
    
  }else{
    # contrast group for unpaired test  
    group <- paste(group_name, collapse = "-")
    if(group%in%"NC-PC"){
      contrast <- makeContrasts(contrasts = "NC-PC",
                                levels    = design)
    }else if(group%in%"NC-PT"){
      contrast <- makeContrasts(contrasts = "NC-PT",
                                levels    = design)
    }else if(group%in%"PC-PT"){
      contrast <- makeContrasts(contrasts = "PC-PT",
                                levels    = design)
    }
    print(contrast)
    # eBayes
    fit2 <- contrasts.fit(fit, contrast)
    fit2 <- eBayes(fit2)
    
    qqt(fit2$t, df = fit2$df.prior+fit2$df.residual, pch = 16, cex = 0.2)
    abline(0,1)
    
    # differential features
    diff_gene <- topTable(fit2, number = Inf, adjust.method = 'BH', coef = 1) %>%
      rownames_to_column("GeneID")  
    
    # delta
    require(future.apply)
    plan(multiprocess, workers = 10)
    delta_value <- future_apply(exprSet, 1, function(x, y){
      # x = exprSet[1, ]
      # y = pheno
      dat <- data.frame(value=x, y) %>%
        arrange(SubGroup) %>%
        dplyr::select(SubGroup, value) 
      dat$Type <- factor(dat$SubGroup, levels = group_name)
      
      dat_delta <- dat %>% group_by(SubGroup) %>%
        summarise(mean_value=mean(value)) %>% # mean or median???
        mutate(delta=dplyr::first(mean_value) - dplyr::last(mean_value)) %>%
        ungroup() 
      
      delta <- mean(dat_delta$delta)
      return(delta)
      
    }, pheno) %>% data.frame() %>%
      setNames("Delta") %>%
      rownames_to_column("GeneID")
    
    # stopCluster(cl)
    
    # combine DEG and delta
    diff_gene_delta <- inner_join(diff_gene, delta_value, by = "GeneID")     
  }
  
  # validate the enriched directory
  pl <- data.frame(edata)[rownames(data.frame(edata))%in%diff_gene_delta$GeneID[1], , F] %>% 
    t() %>% data.frame() %>%
    setNames("Gene") %>%
    rownames_to_column("SampleID") %>%
    inner_join(pheno%>%rownames_to_column("SampleID"), by = "SampleID") %>%
  ggplot(aes(x=SubGroup, y=Gene))+
    geom_boxplot()+
    labs(y=diff_gene$GeneID[1], x="")+
    ggpubr::stat_compare_means(method = "wilcox.test",
                               paired = pair,
                               comparisons = list(group_name))+
    theme_bw()
  print(pl)
  
  # enriched directory: It is sometimes useful to check things by hand to make sure you have the right interpretation.
  for(i in 1:5){
    datCoe <- fit$coefficients[diff_gene_delta$GeneID[i], ]
    deltaMean <- as.numeric(datCoe[group_name[2]] - datCoe[group_name[1]])
    logFC <- diff_gene_delta[diff_gene_delta$GeneID%in%diff_gene_delta$GeneID[i], "logFC"]
    cat(paste0(diff_gene_delta$GeneID[i], ": ", paste(rev(group_name), collapse = "-"), " = ", signif(deltaMean, 3)))
    cat("\n")
    cat(paste0(diff_gene_delta$GeneID[i], ": ", "logFC = ", signif(logFC, 3))) 
    cat("\n")
  }

  if((deltaMean > 0 & logFC > 0) | (deltaMean < 0 & logFC < 0)){
    diff_gene_delta[which(diff_gene_delta$logFC >= fc & diff_gene_delta$adj.P.Val < Pval), "Enrichment"] <- group_name[2]
    diff_gene_delta[which(diff_gene_delta$logFC <= -fc & diff_gene_delta$adj.P.Val < Pval), "Enrichment"] <- group_name[1]
    diff_gene_delta[which(abs(diff_gene_delta$logFC) < fc | diff_gene_delta$adj.P.Val >= Pval), "Enrichment"] <- "Nonsignif"     
  }else if((deltaMean > 0 & logFC < 0) | (deltaMean < 0 & logFC > 0)){
    diff_gene_delta[which(diff_gene_delta$logFC >= fc & diff_gene_delta$adj.P.Val < Pval), "Enrichment"] <- group_name[1]
    diff_gene_delta[which(diff_gene_delta$logFC <= -fc & diff_gene_delta$adj.P.Val < Pval), "Enrichment"] <- group_name[2]
    diff_gene_delta[which(abs(diff_gene_delta$logFC) < fc | diff_gene_delta$adj.P.Val >= Pval), "Enrichment"] <- "Nonsignif"     
  }
  
  # Number & Block
  dat_status <- table(pheno$SubGroup)
  dat_status_number <- as.numeric(dat_status)
  dat_status_name <- names(dat_status)
  diff_gene_delta$Block <- paste(paste(dat_status_number[1], dat_status_name[1], sep = "_"),
                         "vs",
                         paste(dat_status_number[2], dat_status_name[2], sep = "_"))
  
  res <- diff_gene_delta %>% dplyr::select(GeneID, Block, logFC, adj.P.Val, Enrichment, everything()) %>%
    arrange(adj.P.Val, logFC) 
  
  print(dim(res %>% filter(Enrichment != "Nonsignif")))
  
  return(res)
}


NC_PC_LOG2Impute <- get_DiffProtein_limma(
                    dataset    = ExprSet_LOG2Impute,
                    group_name = subgrp[1:2],
                    pair      = FALSE,
                    scale     = FALSE,
                    fc        = 1,
                    Pval      = 0.05)
write.csv(NC_PC_LOG2Impute, "NC_PC_limma_Mass_LOG2Impute.csv", row.names = F)

NC_PT_LOG2Impute <- get_DiffProtein_limma(
                    dataset    = ExprSet_LOG2Impute,
                    group_name = subgrp[c(1,3)],
                    pair      = FALSE,
                    scale     = FALSE,                    
                    fc        = 1,
                    Pval      = 0.05)
write.csv(NC_PT_LOG2Impute, "NC_PT_limma_Mass_LOG2Impute.csv", row.names = F)

PC_PT_LOG2Impute <- get_DiffProtein_limma(
                    dataset    = ExprSet_LOG2Impute,
                    group_name = subgrp[c(2, 3)],
                    pair      = FALSE,
                    scale     = FALSE,                    
                    fc        = 1,
                    Pval      = 0.05)
write.csv(PC_PT_LOG2Impute, "PC_PT_limma_Mass_LOG2Impute.csv", row.names = F)

Welch’s t-test

The independent samples t-test comes in two different forms:
the standard Student’s t-test, which assumes that the variance of the two groups are equal. the Welch's t-test, which is less restrictive compared to the original Student’s test. This is the test where you do not assume that the variance is the same in the two groups, which results in the fractional degrees of freedom.

Welch_ttest <- function(dataset=ExprSet_LOG2Impute,
                        group_name=subgrp[1:2],
                        Pval=0.05,
                        fc=1){
  
  # dataset=ExprSet_LOG2Impute
  # group_name=subgrp[1:2]
  # Pval=0.05
  # fc=1
  
  pheno <- pData(dataset) %>%
    filter(SubGroup%in%group_name) %>%
    mutate(SubGroup=factor(SubGroup, levels = group_name))
  edata <- exprs(dataset)[, rownames(pheno)]
  
  require(rstatix)  
  Welch_res <- apply(edata, 1, function(x, y){
    # x <- edata[1, ]
    # y <- pheno$Group
    dat <- data.frame(value=x, group=y)
    mdn <- tapply(dat$value, dat$group, median) %>% 
      data.frame() %>% setNames("value") %>%
      rownames_to_column("Group")
    mdn1 <- with(mdn, mdn[Group%in%group_name[1], "value"])
    mdn2 <- with(mdn, mdn[Group%in%group_name[2], "value"])
    Log2FC <- log2(mdn2/mdn1)
    rest <- t_test(data = dat, value ~ group)
    return(c(Log2FC, rest$statistic, rest$p))
  }, pheno$SubGroup) %>% 
    t() %>% data.frame() %>%
    setNames(c("logFC", "rho", "P.value"))
  
  res <- Welch_res[!is.nan(Welch_res$logFC), ] %>%
    rownames_to_column("GeneID")
  res$adj.P.Val <- p.adjust(as.numeric(res$P.value), method = "BH")
  # Number & Block
  dat_status <- table(pheno$SubGroup)
  dat_status_number <- as.numeric(dat_status)
  dat_status_name <- names(dat_status)
  res$Block <- paste(paste(dat_status_number[1], dat_status_name[1], sep = "_"),
                         "vs",
                         paste(dat_status_number[2], dat_status_name[2], sep = "_")) 
  # Enrichment
  res[which(res$logFC >= fc & res$adj.P.Val < Pval), "Enrichment"] <- group_name[2]
  res[which(res$logFC <= -fc & res$adj.P.Val < Pval), "Enrichment"] <- group_name[1]
  res[which(abs(res$logFC) < fc | res$adj.P.Val >= Pval), "Enrichment"] <- "Nonsignif"
  
  res <- res %>% dplyr::select(GeneID, Block, logFC, adj.P.Val, Enrichment, everything()) %>%
    arrange(adj.P.Val, logFC) 
  
  return(res)
}

NC_PC_LOG2Impute_WelchT <- Welch_ttest(
                        dataset    = ExprSet_LOG2Impute,
                        group_name = subgrp[1:2],
                        fc         = 1,
                        Pval       = 0.05)
write.csv(NC_PC_LOG2Impute_WelchT, "NC_PC_WelchT_Mass_LOG2Impute.csv", row.names = F)

NC_PT_LOG2Impute_WelchT <- Welch_ttest(
                    dataset    = ExprSet_LOG2Impute,
                    group_name = subgrp[c(1,3)],
                    fc         = 1,
                    Pval       = 0.05)
write.csv(NC_PT_LOG2Impute_WelchT, "NC_PT_WelchT_Mass_LOG2Impute.csv", row.names = F)

PC_PT_LOG2Impute_WelchT <- Welch_ttest(
                    dataset    = ExprSet_LOG2Impute,
                    group_name = subgrp[c(2,3)],
                    fc         = 1,
                    Pval       = 0.05)
write.csv(PC_PT_LOG2Impute_WelchT, "PC_PT_WelchT_Mass_LOG2Impute.csv", row.names = F)

systemic information

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-conda_cos6-linux-gnu (64-bit)
Running under: CentOS Linux 8 (Core)

Matrix products: default
BLAS/LAPACK: /disk/share/anaconda3/lib/libopenblasp-r0.3.10.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] rstatix_0.7.0       convert_1.64.0      marray_1.68.0       limma_3.46.0        Biobase_2.50.0      BiocGenerics_0.36.0
[7] ggplot2_3.3.3       tibble_3.1.0        dplyr_1.0.5        

loaded via a namespace (and not attached):
 [1] sass_0.3.1        edgeR_3.32.1      tidyr_1.1.3       jsonlite_1.7.2    carData_3.0-4     bslib_0.2.4      
 [7] assertthat_0.2.1  askpass_1.1       cellranger_1.1.0  yaml_2.2.1        pillar_1.6.0      backports_1.2.1  
[13] lattice_0.20-41   glue_1.4.2        reticulate_1.18   digest_0.6.27     ggsignif_0.6.0    colorspace_2.0-0 
[19] cowplot_1.1.0     htmltools_0.5.1.1 Matrix_1.3-2      plyr_1.8.6        pkgconfig_2.0.3   broom_0.7.6      
[25] haven_2.3.1       purrr_0.3.4       scales_1.1.1      RSpectra_0.16-0   openxlsx_4.2.3    rio_0.5.16       
[31] openssl_1.4.3     generics_0.1.0    farver_2.1.0      car_3.0-10        ellipsis_0.3.1    ggpubr_0.4.0     
[37] withr_2.4.1       umap_0.2.7.0      magrittr_2.0.1    crayon_1.4.1      readxl_1.3.1      evaluate_0.14    
[43] fansi_0.4.2       forcats_0.5.0     foreign_0.8-81    tools_4.0.2       data.table_1.14.0 hms_1.0.0        
[49] lifecycle_1.0.0   stringr_1.4.0     munsell_0.5.0     locfit_1.5-9.4    zip_2.1.1         jquerylib_0.1.3  
[55] compiler_4.0.2    tinytex_0.31      rlang_0.4.10      grid_4.0.2        labeling_0.4.2    rmarkdown_2.7    
[61] gtable_0.3.0      abind_1.4-5       DBI_1.1.1         curl_4.3          reshape2_1.4.4    R6_2.5.0         
[67] knitr_1.31        utf8_1.2.1        stringi_1.4.6     Rcpp_1.0.6        vctrs_0.3.7       tidyselect_1.1.0 
[73] xfun_0.20        

Reference

  1. Proteomics Data Analysis (2/3): Data Filtering and Missing Value Imputation

  2. Welch’s t-test: When to Use it + Examples

  3. T-TEST ESSENTIALS: DEFINITION, FORMULA AND CALCULATION

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容