Plotly(三)基本图形(2):线图

下面是本系列分享的第二篇,关于线图的分享。

事实上计划中线图和点图应该在一篇中介绍完毕,因为线图内容也不少还有其他拓展,所以就单独介绍一下。

线图的接口与点图基本类似,同样的plotly.express快捷方式可以方便的绘制出线图,与graph_objects不同的是,plotly.express直接调用了line()方法,更加容易理解:

import plotly.express as px

df = px.data.gapminder().query("country=='Canada'")
fig = px.line(df, x="year", y="lifeExp", title='Life expectancy in Canada')
fig.show()

3-1.jpg

一个较为高阶的例子:

import plotly.express as px

df = px.data.gapminder().query("continent != 'Asia'") # remove Asia for visibility
fig = px.line(df, x="year", y="lifeExp", color="continent",
              line_group="country", hover_name="country")
fig.show()
3-2.jpg

同样的,plotly.express不是本文的重点,撇开不谈。

3.1 基本的线图

默认情况下go.Scatter()默认即为线图,隐藏了mode="lines+markers"参数:

import plotly.graph_objects as go
import numpy as np

x = np.arange(10)

fig = go.Figure(data=go.Scatter(x=x, y=x**2))
fig.show()
3-3.jpg

下面这个例子更清晰的比较出了纯线图、线+点图和点图在mode参数传入后的效果区别:

import plotly.graph_objects as go

# Create random data with numpy
import numpy as np
np.random.seed(1)

N = 100
random_x = np.linspace(0, 1, N)
random_y0 = np.random.randn(N) + 5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N) - 5

# Create traces
fig = go.Figure()
fig.add_trace(go.Scatter(x=random_x, y=random_y0,
                    mode='lines',
                    name='lines'))
fig.add_trace(go.Scatter(x=random_x, y=random_y1,
                    mode='lines+markers',
                    name='lines+markers'))
fig.add_trace(go.Scatter(x=random_x, y=random_y2,
                    mode='markers', name='markers'))

fig.show()
3-4.jpg

在掌握基础的线图绘制上,可以通过line传入字典型的参数,通过具体样式的color, width, dash输出不同样式的线型

import plotly.graph_objects as go

# Add data
month = ['January', 'February', 'March', 'April', 'May', 'June', 'July',
         'August', 'September', 'October', 'November', 'December']
high_2000 = [32.5, 37.6, 49.9, 53.0, 69.1, 75.4, 76.5, 76.6, 70.7, 60.6, 45.1, 29.3]
low_2000 = [13.8, 22.3, 32.5, 37.2, 49.9, 56.1, 57.7, 58.3, 51.2, 42.8, 31.6, 15.9]
high_2007 = [36.5, 26.6, 43.6, 52.3, 71.5, 81.4, 80.5, 82.2, 76.0, 67.3, 46.1, 35.0]
low_2007 = [23.6, 14.0, 27.0, 36.8, 47.6, 57.7, 58.9, 61.2, 53.3, 48.5, 31.0, 23.6]
high_2014 = [28.8, 28.5, 37.0, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]
low_2014 = [12.7, 14.3, 18.6, 35.5, 49.9, 58.0, 60.0, 58.6, 51.7, 45.2, 32.2, 29.1]

fig = go.Figure()
# Create and style traces
fig.add_trace(go.Scatter(x=month, y=high_2014, name='High 2014',
                         line=dict(color='firebrick', width=4)))
fig.add_trace(go.Scatter(x=month, y=low_2014, name = 'Low 2014',
                         line=dict(color='royalblue', width=4)))
fig.add_trace(go.Scatter(x=month, y=high_2007, name='High 2007',
                         line=dict(color='firebrick', width=4,
                              dash='dash') # dash options include 'dash', 'dot', and 'dashdot'
))
fig.add_trace(go.Scatter(x=month, y=low_2007, name='Low 2007',
                         line = dict(color='royalblue', width=4, dash='dash')))
fig.add_trace(go.Scatter(x=month, y=high_2000, name='High 2000',
                         line = dict(color='firebrick', width=4, dash='dot')))
fig.add_trace(go.Scatter(x=month, y=low_2000, name='Low 2000',
                         line=dict(color='royalblue', width=4, dash='dot')))

# Edit the layout
fig.update_layout(title='Average High and Low Temperatures in New York',
                   xaxis_title='Month',
                   yaxis_title='Temperature (degrees F)')


fig.show()
3-5.jpg

3.2 进阶线型效果

通过connectgaps对线型中数据的中断进行控制,默认情况下绘图中断,connectgaps=True后则会自动连接中断:

import plotly.graph_objects as go

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

fig = go.Figure()

fig.add_trace(go.Scatter(
    x=x,
    y=[10, 20, None, 15, 10, 5, 15, None, 20, 10, 10, 15, 25, 20, 10],
    name = '<b>No</b> Gaps', # Style name/legend entry with html tags
    connectgaps=True # override default to connect the gaps
))
fig.add_trace(go.Scatter(
    x=x,
    y=[5, 15, None, 10, 5, 0, 10, None, 15, 5, 5, 10, 20, 15, 5],
    name='Gaps',
#     connectgaps=False  # Default
))

fig.show()
3-6.jpg

通过底层的line_shape参数改变线段样式:

  • linear 折线
  • spline 曲线
  • vhv/hvh/vh/hv 不同样式的折线效果
import plotly.graph_objects as go
import numpy as np

x = np.array([1, 2, 3, 4, 5])
y = np.array([1, 3, 2, 3, 1])

fig = go.Figure()
fig.add_trace(go.Scatter(x=x, y=y, name="linear",
                    line_shape='linear'))
fig.add_trace(go.Scatter(x=x, y=y + 5, name="spline",
                    text=["tweak line smoothness<br>with 'smoothing' in line object"],
                    hoverinfo='text+name',
                    line_shape='spline'))
fig.add_trace(go.Scatter(x=x, y=y + 10, name="vhv",
                    line_shape='vhv'))
fig.add_trace(go.Scatter(x=x, y=y + 15, name="hvh",
                    line_shape='hvh'))
fig.add_trace(go.Scatter(x=x, y=y + 20, name="vh",
                    line_shape='vh'))
fig.add_trace(go.Scatter(x=x, y=y + 25, name="hv",
                    line_shape='hv'))

fig.update_traces(hoverinfo='text+name', mode='lines+markers')
fig.update_layout(legend=dict(y=0.5, traceorder='reversed', font_size=16))

fig.show()
3-7.jpg

下面这个例子是非常值得推荐学习的例子,通过对线型的调整,输出了杂志级的商业数据图

事实上我自己就是运用这个参数略微变化并封装函数用作我日常的分析。

针对这个例子,值得注意的细节有:

  1. np.vstack()/np.hstack() 按照垂直(行)/水平(列)方向生成新的数组
  2. 链接断点参数 connectgaps=True
  3. 在首、尾部使用点的绘制方式,高端大气上档次
  4. 通过对几个线段的分别绘制,提前准备好label和color列表
  5. 针对xaxis和yaxis分别设置样式
import plotly.graph_objects as go
import numpy as np

title = 'Main Source for News'
labels = ['Television', 'Newspaper', 'Internet', 'Radio']
colors = ['rgb(67,67,67)', 'rgb(115,115,115)', 'rgb(49,130,189)', 'rgb(189,189,189)']

mode_size = [8, 8, 12, 8]
line_size = [2, 2, 4, 2]

x_data = np.vstack((np.arange(2001, 2014),)*4)

y_data = np.array([
    [74, 82, 80, 74, 73, 72, 74, 70, 70, 66, 66, 69],
    [45, 42, 50, 46, 36, 36, 34, 35, 32, 31, 31, 28],
    [13, 14, 20, 24, 20, 24, 24, 40, 35, 41, 43, 50],
    [18, 21, 18, 21, 16, 14, 13, 18, 17, 16, 19, 23],
])

fig = go.Figure()

for i in range(0, 4):
    fig.add_trace(go.Scatter(x=x_data[i], y=y_data[i], mode='lines',
        name=labels[i],
        line=dict(color=colors[i], width=line_size[i]),
        connectgaps=True,
    ))

    # endpoints
    fig.add_trace(go.Scatter(
        x=[x_data[i][0], x_data[i][-1]],
        y=[y_data[i][0], y_data[i][-1]],
        mode='markers',
        marker=dict(color=colors[i], size=mode_size[i])
    ))

fig.update_layout(
    xaxis=dict(
        showline=True,
        showgrid=False,
        showticklabels=True,
        linecolor='rgb(204, 204, 204)',
        linewidth=2,
        ticks='outside',
        tickfont=dict(
            family='Arial',
            size=12,
            color='rgb(82, 82, 82)',
        ),
    ),
    yaxis=dict(
        showgrid=False,
        zeroline=False,
        showline=False,
        showticklabels=False,
    ),
    autosize=False,
    margin=dict(
        autoexpand=False,
        l=100,
        r=20,
        t=110,
    ),
    showlegend=False,
    plot_bgcolor='white'
)

annotations = []

# Adding labels
for y_trace, label, color in zip(y_data, labels, colors):
    # labeling the left_side of the plot
    annotations.append(dict(xref='paper', x=0.05, y=y_trace[0],
                                  xanchor='right', yanchor='middle',
                                  text=label + ' {}%'.format(y_trace[0]),
                                  font=dict(family='Arial',
                                            size=16),
                                  showarrow=False))
    # labeling the right_side of the plot
    annotations.append(dict(xref='paper', x=0.95, y=y_trace[11],
                                  xanchor='left', yanchor='middle',
                                  text='{}%'.format(y_trace[11]),
                                  font=dict(family='Arial',
                                            size=16),
                                  showarrow=False))
# Title
annotations.append(dict(xref='paper', yref='paper', x=0.0, y=1.05,
                              xanchor='left', yanchor='bottom',
                              text='Main Source for News',
                              font=dict(family='Arial',
                                        size=30,
                                        color='rgb(37,37,37)'),
                              showarrow=False))
# Source
annotations.append(dict(xref='paper', yref='paper', x=0.5, y=-0.1,
                              xanchor='center', yanchor='top',
                              text='Source: PewResearch Center & ' +
                                   'Storytelling with data',
                              font=dict(family='Arial',
                                        size=12,
                                        color='rgb(150,150,150)'),
                              showarrow=False))

fig.update_layout(annotations=annotations)

fig.show()
3-8.jpg

线图的填充效果

这种效果主要靠两次绘画线段,除了正常线段绘制,底色线段采用fill='toself'参数的方式,同时使用fillcolor、line_color进行颜色配置,最终用showlegend=False将底色的线段图例隐藏掉。

import plotly.graph_objects as go
import numpy as np



x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
x_rev = x[::-1]

# Line 1
y1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y1_upper = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
y1_lower = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
y1_lower = y1_lower[::-1]

# Line 2
y2 = [5, 2.5, 5, 7.5, 5, 2.5, 7.5, 4.5, 5.5, 5]
y2_upper = [5.5, 3, 5.5, 8, 6, 3, 8, 5, 6, 5.5]
y2_lower = [4.5, 2, 4.4, 7, 4, 2, 7, 4, 5, 4.75]
y2_lower = y2_lower[::-1]

# Line 3
y3 = [10, 8, 6, 4, 2, 0, 2, 4, 2, 0]
y3_upper = [11, 9, 7, 5, 3, 1, 3, 5, 3, 1]
y3_lower = [9, 7, 5, 3, 1, -.5, 1, 3, 1, -1]
y3_lower = y3_lower[::-1]


fig = go.Figure()

fig.add_trace(go.Scatter(
    x=x+x_rev,
    y=y1_upper+y1_lower,
    fill='toself',
    fillcolor='rgba(0,100,80,0.2)',
    line_color='rgba(255,255,255,0)',
    showlegend=False,
    name='Fair',
))
fig.add_trace(go.Scatter(
    x=x+x_rev,
    y=y2_upper+y2_lower,
    fill='toself',
    fillcolor='rgba(0,176,246,0.2)',
    line_color='rgba(255,255,255,0)',
    name='Premium',
    showlegend=False,
))
fig.add_trace(go.Scatter(
    x=x+x_rev,
    y=y3_upper+y3_lower,
    fill='toself',
    fillcolor='rgba(231,107,243,0.2)',
    line_color='rgba(255,255,255,0)',
    showlegend=False,
    name='Ideal',
))
fig.add_trace(go.Scatter(
    x=x, y=y1,
    line_color='rgb(0,100,80)',
    name='Fair',
))
fig.add_trace(go.Scatter(
    x=x, y=y2,
    line_color='rgb(0,176,246)',
    name='Premium',
))
fig.add_trace(go.Scatter(
    x=x, y=y3,
    line_color='rgb(231,107,243)',
    name='Ideal',
))

fig.update_traces(mode='lines')
fig.show()
3-9.jpg

3.3 ,面积图

由线图衍生出的图形样式:面积图

核心参数是fill

  • toself 对自身的填充
  • tozeroy 对坐标轴y轴方向的填充
  • tonexty 对上个图形y轴方向的填充
import plotly.graph_objects as go

fig = go.Figure()
fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[0, 2, 3, 5], fill='tozeroy')) # fill down to xaxis
fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[3, 5, 1, 7], fill='tonexty')) # fill to trace0 y

fig.show()

[图片上传失败...(image-794e1c-1598499783875)]

隐藏生成线

通过用mode="none"替代掉mode="markers+lines"的默认值

import plotly.graph_objects as go

fig = go.Figure()
fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[0, 2, 3, 5], fill='tozeroy',
                    mode='none' # override default markers+lines
                    ))
fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[3, 5, 1, 7], fill='tonexty',
                    mode= 'none'))

fig.show()
3-10.jpg

两线的内部填充效果

主要是通过第二条线型中的fill="tonexty"实现,特别注意第一条线型的fill=None

import plotly.graph_objects as go

fig = go.Figure()
fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[3, 4, 8, 3],
    fill=None,
    mode='lines',
    line_color='indigo',
    ))
fig.add_trace(go.Scatter(
    x=[1, 2, 3, 4],
    y=[1, 6, 2, 6],
    fill='tonexty', # fill area between trace0 and trace1
    mode='lines', line_color='indigo'))

fig.show()
3-11.jpg

3.4 堆积面积图

stackgroup是堆积图中的关键参数,参数用于堆积同一组中不同记录的y值。同一组中的记录将在下次同组出现的时候作为基础值叠加到新的y值上。

import plotly.graph_objects as go

x=['Winter', 'Spring', 'Summer', 'Fall']

fig = go.Figure()
fig.add_trace(go.Scatter(
    x=x, y=[40, 60, 40, 10],
    hoverinfo='x+y',
    mode='lines',
    line=dict(width=0.5, color='rgb(131, 90, 241)'),
    stackgroup='one' # define stack group
))
fig.add_trace(go.Scatter(
    x=x, y=[20, 10, 10, 60],
    hoverinfo='x+y',
    mode='lines',
    line=dict(width=0.5, color='rgb(111, 231, 219)'),
    stackgroup='one'
))
fig.add_trace(go.Scatter(
    x=x, y=[40, 30, 50, 30],
    hoverinfo='x+y',
    mode='lines',
    line=dict(width=0.5, color='rgb(184, 247, 212)'),
    stackgroup='one'
))

fig.update_layout(yaxis_range=(0, 100))
fig.show()
3-12.jpg

含标准值的面积堆积图

通过groupnorm的参数设置,制定了stackgroup对y值数据的叠加方式。

import plotly.graph_objects as go

x=['Winter', 'Spring', 'Summer', 'Fall']
fig = go.Figure()

fig.add_trace(go.Scatter(
    x=x, y=[40, 20, 30, 40],
    mode='lines',
    line=dict(width=0.5, color='rgb(184, 247, 212)'),
    stackgroup='one',
    groupnorm='percent' # sets the normalization for the sum of the stackgroup
))
fig.add_trace(go.Scatter(
    x=x, y=[50, 70, 40, 60],
    mode='lines',
    line=dict(width=0.5, color='rgb(111, 231, 219)'),
    stackgroup='one'
))
fig.add_trace(go.Scatter(
    x=x, y=[70, 80, 60, 70],
    mode='lines',
    line=dict(width=0.5, color='rgb(127, 166, 238)'),
    stackgroup='one'
))
fig.add_trace(go.Scatter(
    x=x, y=[100, 100, 100, 100],
    mode='lines',
    line=dict(width=0.5, color='rgb(131, 90, 241)'),
    stackgroup='one'
))

fig.update_layout(
    showlegend=True,
    xaxis_type='category',
    yaxis=dict(
        type='linear',
        range=[1, 100],
        ticksuffix='%'))

fig.show()
3-13.jpg

选择悬停点

  • hoveron = 'points+fills'/'points' 在何处激活悬停显示信息
  • text="Points only" 具体信息文本设置
import plotly.graph_objects as go

fig = go.Figure()
fig.add_trace(go.Scatter(x=[0,0.5,1,1.5,2], y=[0,1,2,1,0],
                    fill='toself', fillcolor='darkviolet',
                    hoveron = 'points+fills', # select where hover is active
                    line_color='darkviolet',
                    text="Points + Fills",
                    hoverinfo = 'text+x+y'))

fig.add_trace(go.Scatter(x=[3,3.5,4,4.5,5], y=[0,1,2,1,0],
                    fill='toself', fillcolor = 'violet',
                    hoveron='points',
                    line_color='violet',
                    text="Points only",
                    hoverinfo='text+x+y'))

fig.update_layout(
    title = "hover on <i>points</i> or <i>fill</i>",
    xaxis_range = [0,5.2],
    yaxis_range = [0,3]
)

fig.show()
3-14.jpg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351