python实现统计图片中物品的数量

下面代码有chatgpt完成, 粗略统计一个照片中物品的数量

import cv2
import os

def count_icons_in_image(image_path, debug_folder, threshold=200, min_icon_area=50):
    """
    Count the number of icons in an image by detecting contours of non-background areas.
    Save the processed image with contours drawn to a debug folder.

    Parameters:
    - image_path: str, path to the image file.
    - debug_folder: str, path to the folder where debug images will be saved.
    - threshold: int, threshold for background color (default is 200, suitable for white backgrounds).
    - min_icon_area: int, minimum area to consider a contour as an icon.

    Returns:
    - count: int, number of icons detected in the image.
    """
    # Load the image
    image = cv2.imread(image_path)

    # Convert the image to grayscale
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Apply a binary threshold to isolate non-background areas
    _, thresh = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY_INV)

    # Apply a Gaussian blur to reduce noise
    blurred = cv2.GaussianBlur(thresh, (5, 5), 0)

    # Apply morphological operations to reduce noise
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    morph = cv2.morphologyEx(blurred, cv2.MORPH_CLOSE, kernel)

    # Find contours in the morphologically processed image
    contours, _ = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Filter out small contours based on area and draw them on the image
    icons_count = 0
    for cnt in contours:
        area = cv2.contourArea(cnt)
        if area > min_icon_area:
            icons_count += 1
            # Draw the contour on the image
            cv2.drawContours(image, [cnt], -1, (0, 255, 0), 2)  # Green contour

    # Save the debug image with contours
    debug_image_path = os.path.join(debug_folder, os.path.basename(image_path))
    cv2.imwrite(debug_image_path, image)

    return icons_count

def count_icons_in_folder(folder_path, threshold=200, min_icon_area=50):
    """
    Count icons in all images in a folder, print the result, and save debug images.

    Parameters:
    - folder_path: str, path to the folder containing images.
    - threshold: int, threshold for background color (default is 200, suitable for white backgrounds).
    - min_icon_area: int, minimum area to consider a contour as an icon.
    """
    # Create a debug folder to save processed images
    debug_folder = os.path.join(folder_path, 'debug')
    os.makedirs(debug_folder, exist_ok=True)

    # Get a list of all files in the folder
    files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]

    for file_name in files:
        file_path = os.path.join(folder_path, file_name)

        try:
            # Count icons in the image
            count = count_icons_in_image(file_path, debug_folder, threshold, min_icon_area)
            print(f"Image: {file_name}, Icons found: {count}")
        except Exception as e:
            print(f"Error processing {file_name}: {e}")

# Define the path to the folder containing images
folder_path = '/Users/meican/Downloads/src/'

# Count icons in all images in the folder
count_icons_in_folder(folder_path)


# Define the path to the folder containing images
folder_path = '/Users/meican/Downloads/src'

# Count icons in all images in the folder
count_icons_in_folder(folder_path)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,002评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,777评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,341评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,085评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,110评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,868评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,528评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,422评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,938评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,067评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,199评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,877评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,540评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,079评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,192评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,514评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,190评论 2 357

推荐阅读更多精彩内容