[toc]
基础概念
Channel 是 Golang 的核心类型,常用于多个 Goroutine 之间的通信。可以把 Channel 理解成是一个单向的管道,具有 FIFO 特性。
image.png
Channel 是有容量限制的
- 当容量是 0 时,称为无缓冲 Channel。发送和接收只有一方就绪时,就绪方会被阻塞直到另一方也就绪。
- 当容量大于 0 时,称为有缓冲 Channel。当传输中的元素个数超过容量时,发送方将会被阻塞直到有可用的缓冲空间出现;当传输中的元素个数为 0 时,消费方将会被阻塞直到缓冲空间出现新的数据。
数据结构
type hchan struct {
qcount uint // total data in the queue
dataqsiz uint // size of the circular queue
buf unsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16
closed uint32
elemtype *_type // element type
sendx uint // send index
recvx uint // receive index
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
// lock protects all fields in hchan, as well as several
// fields in sudogs blocked on this channel.
//
// Do not change another G's status while holding this lock
// (in particular, do not ready a G), as this can deadlock
// with stack shrinking.
lock mutex
}
- qcount,缓冲队列的大小,记录实际元素数量
- dataqsiz,缓冲队列的容量,记录最大可存储元素数量
- buf,指向环形缓冲队列的指针
- elemsize,每个元素的大小
- closed,记录 channel 的关闭状态
- elemtype,元素的类型
- sendx,缓冲队列中即将发送的数据下标
- recvx,缓冲队列中即将接收的数据下标
- recvq,等待从 channel 接收数据的 goroutine 双向链表
- sendq,等待向 channel 发送数据的 goroutine 双向链表
- lock,多 goroutine 读写的并发保护锁
图解发送数据
image.png
注:无缓冲 Channel 原理类似不做赘述
图解接收数据
image.png
注:无缓冲 Channel 原理类似不做赘述
源码解读
发送数据
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
...
lock(&c.lock)
if c.closed != 0 {
unlock(&c.lock)
panic(plainError("send on closed channel"))
}
if sg := c.recvq.dequeue(); sg != nil { // 关键点1
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
}
if c.qcount < c.dataqsiz { // 关键点2
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx)
...
typedmemmove(c.elemtype, qp, ep)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
unlock(&c.lock)
return true
}
if !block {
unlock(&c.lock)
return false
}
// 关键点3
// Block on the channel. Some receiver will complete our operation for us.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.waiting = mysg
gp.param = nil
c.sendq.enqueue(mysg)
// Signal to anyone trying to shrink our stack that we're about
// to park on a channel. The window between when this G's status
// changes and when we set gp.activeStackChans is not safe for
// stack shrinking.
atomic.Store8(&gp.parkingOnChan, 1)
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanSend, traceEvGoBlockSend, 2)
// Ensure the value being sent is kept alive until the
// receiver copies it out. The sudog has a pointer to the
// stack object, but sudogs aren't considered as roots of the
// stack tracer.
KeepAlive(ep)
...
return true
}
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
...
if sg.elem != nil {
sendDirect(c.elemtype, sg, ep)
sg.elem = nil
}
gp := sg.g
unlockf()
gp.param = unsafe.Pointer(sg)
sg.success = true
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, skip+1)
}
关键点
- 当 recvq 有等待的接收者时,说明缓冲队列是空的,则将数据直接发送给接收者,然后将接收者的 Goroutine 标记成可运行的状态,并加入到本地可运行队列中。
- 当缓冲队列未满时,则将数据直接写入缓冲队列。
- 当缓冲队列满了或者无缓冲队列时,则将发送数据的指针和当前 Goroutine 等信息组装成 sudog 并加入到 sendq 中,等待合适机会执行。
接收数据
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
...
lock(&c.lock)
...
if sg := c.sendq.dequeue(); sg != nil { // 关键点1
// Found a waiting sender. If buffer is size 0, receive value
// directly from sender. Otherwise, receive from head of queue
// and add sender's value to the tail of the queue (both map to
// the same buffer slot because the queue is full).
recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true, true
}
if c.qcount > 0 { // 关键点2
// Receive directly from queue
qp := chanbuf(c, c.recvx)
...
if ep != nil {
typedmemmove(c.elemtype, ep, qp)
}
typedmemclr(c.elemtype, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.qcount--
unlock(&c.lock)
return true, true
}
if !block {
unlock(&c.lock)
return false, false
}
// 关键点3
// no sender available: block on this channel.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
gp.waiting = mysg
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.param = nil
c.recvq.enqueue(mysg)
// Signal to anyone trying to shrink our stack that we're about
// to park on a channel. The window between when this G's status
// changes and when we set gp.activeStackChans is not safe for
// stack shrinking.
atomic.Store8(&gp.parkingOnChan, 1)
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanReceive, traceEvGoBlockRecv, 2)
...
return true, success
}
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
if c.dataqsiz == 0 {
...
if ep != nil {
// copy data from sender
recvDirect(c.elemtype, sg, ep)
}
} else {
// Queue is full. Take the item at the
// head of the queue. Make the sender enqueue
// its item at the tail of the queue. Since the
// queue is full, those are both the same slot.
qp := chanbuf(c, c.recvx)
...
// copy data from queue to receiver
if ep != nil {
typedmemmove(c.elemtype, ep, qp)
}
// copy data from sender to queue
typedmemmove(c.elemtype, qp, sg.elem)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
}
sg.elem = nil
gp := sg.g
unlockf()
gp.param = unsafe.Pointer(sg)
sg.success = true
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, skip+1)
}
关键点
- 当 sendq 有等待的发送者时,如果是无缓冲队列,则直接从发送者获取数据;如果是缓冲队列满了,则从缓冲队列取出一个数据,然后将发送者的数据写入缓冲队列。最后将发送者的 Goroutine 标记成可运行的状态,并加入到本地可运行队列中。
- 当缓冲队列有数据时,则直接从缓冲队列读取数据。
- 当缓冲无数据时,则将接收数据的指针和当前 Goroutine 等信息组装成 sudog 并加入到 recvq 中,等待合适机会执行。