当电商被刷了80万营销资源怎么办?

文/腾讯云布道师 贺嘉

运维的同学作为IT行业公认的背锅侠,不仅每天要负责机房巡检、服务器上架、网络管理、应用运维的日常维护,版本投产、变更管理、数据查询等等工作有不少都要熬夜实施。按照ITIL的管理流程,出了一定程度的现网问题,还少不了和开发同学一起背锅。

但其实这还不是最坑的时刻,在电商行业做运维压力最大的时刻之一估计要算是公司搞营销活动了。除了要提前准备好带宽,多在腾讯云等公有云上搞一批云主机,还要提前和开发一起优化访问体验。开发的H5活动页面一旦上线,运维同学需要时刻看着CPU、带宽、内存等设备性能指标,同时密切关注应用连接数、网页打开时间、应用访问失败率等应用层面的性能指标。

结果你可能突然发现坑爹的事情来了,准备的百万级营销资源本来是市场的同学准备拉新用户的,结果在一些论坛里居然出现了这样的帖子,一群羊毛党要来组队刷你们的营销资源,真正的新用户反而被他们堵在门外了。

要是营销资源都被“羊毛党”刷完了,今年下半年市场同学和运维同学的KPI就要完不成了好么。

之前做在线旅游的同程也碰到过类似的问题,看看他们是怎么搞定的吧。在一场基于微信的火车票免单活动里,居然有95%是各类羊毛党来刷营销资源,再转卖牟利的。

同程是如何解决这个电商防刷的问题呢?

其实如果要识别这些刷促销资源恶意用户,以用户特征来说,我们还是可以有章可循。

举例来说,如果在某一个代理IP段出现了大量的用户聚集,

在某个深夜凌晨3-5点这种正常用户较少下单的时间,出现的密集订单,

或者是在某个偏远且人口稀少的西部地区,出现了与其人口密度不匹配的大量订单。

尽管理解防刷的原理并不难,但要搭建一套电商防刷系统还需要相当的技术积累和海量的数据训练。以风险学习引擎为例,腾讯云天御采用了黑/白双分类器风险判定机制。之所以采用黑/白双分类器的原因就在于减少对正常用户的误伤。某个IP是恶意的IP,那么该IP上可能会有一些正常的用户,比如大网关IP。如果要尽可能的提升识别的准确率,对于电商防刷系统其实有着很强的数据积累要求,只有通过大数据集的多次训练,恶意用户的识别准确率才可能做到准确。

也正是基于这样的原因,同程在第一时间接入了腾讯云天御系统,在腾讯云的技术同学的支持下,在半天的时间里,结合天御的海量用户特征信息,按照IP段、用户信息、用户行为模式等纬度,对255万条参与活动的用户信息进行了数据识别,发现了230万条恶意用户信息,为同程挽回了近80万的营销资源潜在损失。

总结:

电商的运维们在促销活动中要最大限度避免刷单,又减少对正常用户的体验影响,我们可以主要从以下三个方面下手对恶意用户进行“柔性打击”

1.注册环节:识别虚假注册、减少“羊毛党”能够使用的账号量。在注册环节识别虚假注册的账号,并进行拦截和打击。

2.登录场景:提高虚假账号登录门槛,从而减少能够到达活动环节的虚假账号量。比如,登录环节通过验证码、短信验证码等手段来降低自动机的登录效率,从而达到减少虚假账号登录量、减轻活动现场安全压力的目的。

3.活动环节:这个是防刷单对抗的主战场,也是减少“羊毛党”获利的直接战场;这里的对抗措施,一般有三个方面:

1)通过验证码(短信、语音)降低黑产刷单的效率。

2)系统实时接入腾讯云天御这样的防刷系统,对恶意用户数据进行实时识别。

3)营销系统层面,大幅度降低异常账号的优惠力度。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容

  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 171,973评论 25 707
  • 如果有人让现在的我来描述小时候的自己,一定会惊讶年幼的我是不是另外一个人。我的童年已经过去,但是那些经历和幼年时形...
    与梦阅读 167评论 0 0
  • 世界上最快而又最慢,最长而又最短,最平凡而又最珍贵,最易被忽视而又令人后悔的是什么呢?对,就是时间。珍惜时间是我的...
    空白野阅读 234评论 0 0
  • 2017年6月22号,国教教育学院组织赴往安阳学习红色精神。 我们通过坐火车达到地方之后在熟悉过环境我们开启了学习...
    1fdbbfd81c19阅读 143评论 0 0
  • 我是路飞老婆 女帝!
    女帝汉库克阅读 364评论 0 0