Python、numpy与axis

本文来源于https://community.bigquant.com/t/python%E3%80%81numpy-%E4%B8%8E-axis/127023

这次和大家分享的是 numpy 中的 axis 这个东西。当初学的时候也没太在意,向来都是感觉差不多就直接过去了,没有去深究背后的一些逻辑。前些天被问起的时候一时懵懂,查了下资料后发现还有点意思,于是就打算写这么一篇专栏来分享一下所得


要想学习 axis,首先要知道的就是 axis 的计数方式。我们在使用 numpy 的各种函数——比如说 np.sum——的时候,有一个参数就叫做 axis。那么这个参数的意思是什么呢?最直白地来说的话,就是“最外面的括号代表着 axis=0,依次往里的括号对应的 axis 的计数就依次加 1

举个例子,现在我们有一个矩阵:

image.png
在 Python,或说在 numpy 里面,这个矩阵是这样被表达出来的:x = [ [0, 1], [2, 3] ],然后 axis 的对应方式就是:

image

不管画风怎么变,很丑这一点都无法改变啊……

所以相应的运算就是:

image

对应的代码实现和运行结果如下:

image

可以看到,貌似出来的结果比我们推导的结果的括号要少一些。这是因为诸如 np.sum 这种函数中有一个参数叫 keepdims,它的默认值是 False,此时它会把多余的括号给删掉。假如我们把它设为 True 的话,就可以得到和推导中一致的结果了:

image

下面来看一个更“高维”一点的例子:

image

对应的代码实现和运行结果如下:

image

以及

image

可以看到结果和我们推导的确实一样

现在我们知道哪个 axis 对应于数组中的哪些元素了,接下来还需要知道的就是 transpose 这个函数到底在背后干了什么。从纸面上来看,如果一个高维数组 x 的 shape 是 (2, 3, 4),那么 transpose 的作用就是把这个 shape 中各个数的顺序改一改。比如说:

image

但是 transpose 返回的结果究竟是如何得到的,可能就比较难理解了。幸运的是,这个回答 2非常好地阐明了这背后的原理。为了方便观众老爷们,我在这里就当一个搬运 and 润色工

首先是对这个 shape 的理解。直观地说,shape 中的各个数就是对应 axis 的元素个数。比如说上图中的 x,它画出来会是这个样子的:

image

字比画还丑呢……

如果我们换一种思路的话,以 axis=0 为例,由于我们现在整个数组里面一共有 24 个数,而 axis=0 只有两个元素,所以可以理解为在 axis=0 这个 axis 上,每隔 24 / 2 = 12 个数就跳一下。比如说上面这个图中就可以看出,两个橙色矩阵对应的数之间差的都是 12

类似的,由于一个橙色矩阵中只有 24 / 2 = 12 个数,所以我们可以理解为在 axis=1 这个 axis 上,每隔 12 / 3 = 4 个数就跳一下。表现在图中,就是同一个橙色矩阵的两个相邻的蓝色向量对应的数之间差的都是 4

再次类似的,由于一个蓝色向量中只有 12 / 3 = 4 个数,我们可以理解为在 axis=2 这个 axis 上,每隔 4 / 4 = 1 个数就跳一下。表现在图中……观众老爷们想必也知道是怎样的了 ( σ’ω’)σ

所以我们现在可以定义一个新的东西,比如说叫做 strides 吧,它记录着每个 axis 上跳过的数。比如说上图对应的三维数组,它的 strides 就是 (12, 4, 1)

那么接下来激动人心的时刻到了:transpose 的本质,其实就是对 strides 中各个数的顺序进行调换。举个例子:

image

在 transpose(1, 0, 2) 后,相应的 strides 会变成 (4, 12, 1)。而从上图可以看出,transpose 的结果确实满足:

  • axis=0 的 axis 上,每隔 4 个数跳一下
  • axis=1 的 axis 上,每隔 12 个数跳一下
  • axis=2 的 axis 上,每隔 1 个数跳一下

至此,transpose 背后的逻辑就理顺啦!撒花!★,°:.☆( ̄▽ ̄)/$:.°★

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容

  • numpy.random.randint Return random integers fromlow(inclu...
    onepedalo阅读 1,170评论 0 1
  • 基础篇NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(...
    oyan99阅读 5,110评论 0 18
  • 1. tf函数 tensorflow 封装的工具类函数 | 操作组 | 操作 ||:-------------| ...
    南墙已破阅读 5,058评论 0 5
  • TF API数学计算tf...... :math(1)刚开始先给一个运行实例。tf是基于图(Graph)的计算系统...
    MachineLP阅读 3,432评论 0 1
  • 双脚分开两个肩宽,脚尖自然向外打开,双手落于肚脐下方十指相扣。 吸气,脊柱延伸,呼气,弯曲双膝向两旁大大的打开,臀...
    aily群阅读 2,528评论 0 0