IoU 作为目标检测算法性能 mAP 计算的一个非常重要的函数。
但纵观 IoU 计算的介绍知识,都是直接给出代码,给出计算方法,没有人彻底地分析过其中的逻辑,故本人书写该篇博客来介绍下其中的逻辑。
1. IoU的简介及原理解析
IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。
开始计算之前,我们首先进行分析下交集和并集到底应该怎么计算:我们首先需要计算交集,然后并集通过两个边框的面积的和减去交集部分即为并集,因此 IoU 的计算的难点在于交集的计算。
为了计算交集,你脑子里首先想到的方法应该是:考虑两个边框的相对位置,然后按照相对位置(左上,左下,右上,右下,包含,互不相交)分情况讨论,来计算交集。
上图就是你的直觉,这样想没有错。但计算一个交集,就要分多种情况讨论,要是程序真的按照这逻辑编写就太搞笑了。因此对这个问题进行进一步地研究显得十分有必要。
让我们重新思考一下两个框交集的计算。两个框交集的计算的实质是两个集合交集的计算,因此我们可以将两个框的交集的计算简化为:
通过简化,我们可以清晰地看到,交集计算的关键是交集上下界点(图中蓝点)的计算。
我们假设集合 A 为 [x 1 x_{1}x1,x 2 x_{2}x2],集合 B 为 [y 1 y_{1}y1,y 2 y_{2}y2]。然后我们来求AB交集的上下界限。
交集计算的逻辑
- 交集下界 z 1 z_{1}z1:max ( x 1 , y 1 ) \text{max}(x_{1}, y_{1})max(x1,y1)
- 交集上界 z 2 z_{2}z2:min ( x 2 , y 2 ) \text{min}(x_{2}, y_{2})min(x2,y2)
- 如果 z 2 − z 1 z_{2}-z_{1}z2−z1 小于0,则说明集合 A 和集合 B 没有交集。
下面使用Python来实现两个一维集合的 IoU 的计算:
def iou(set_a, set_b):
'''
一维 iou 的计算
'''
x1, x2 = set_a # (left, right)
y1, y2 = set_b # (left, right)
low = max(x1, y1)
high = min(x2, y2)
# intersection
if high-low<0:
inter = 0
else:
inter = high-low
# union
union = (x2 - x1) + (y2 - y1) - inter
# iou
iou = inter / union
return iou
上面,我们计算了两个一维集合的 iou,将上面的程序进行扩展,即可得到两个框 IoU 计算的程序。
def iou(box1, box2):
'''
两个框(二维)的 iou 计算
注意:边框以左上为原点
box:[top, left, bottom, right]
'''
in_h = min(box1[2], box2[2]) - max(box1[0], box2[0])
in_w = min(box1[3], box2[3]) - max(box1[1], box2[1])
inter = 0 if in_h<0 or in_w<0 else in_h*in_w
union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + \
(box2[2] - box2[0]) * (box2[3] - box2[1]) - inter
iou = inter / union
return iou
2. 基于TensorFlow的IoU实现
上节介绍了IoU,及其的计算,下面我们给出其在 TensorFlow 上的实现:
import tensorflow as tf
def IoU_calculator(x, y, w, h, l_x, l_y, l_w, l_h):
"""calaulate IoU
Args:
x: net predicted x
y: net predicted y
w: net predicted width
h: net predicted height
l_x: label x
l_y: label y
l_w: label width
l_h: label height
Returns:
IoU
"""
# convert to coner
x_max = x + w/2
y_max = y + h/2
x_min = x - w/2
y_min = y - h/2
l_x_max = l_x + l_w/2
l_y_max = l_y + l_h/2
l_x_min = l_x - l_w/2
l_y_min = l_y - l_h/2
# calculate the inter
inter_x_max = tf.minimum(x_max, l_x_max)
inter_x_min = tf.maximum(x_min, l_x_min)
inter_y_max = tf.minimum(y_max, l_y_max)
inter_y_min = tf.maximum(y_min, l_y_min)
inter_w = inter_x_max - inter_x_min
inter_h = inter_y_max - inter_y_min
inter = tf.cond(tf.logical_or(tf.less_equal(inter_w,0), tf.less_equal(inter_h,0)),
lambda:tf.cast(0,tf.float32),
lambda:tf.multiply(inter_w,inter_h))
# calculate the union
union = w*h + l_w*l_h - inter
IoU = inter / union
return IoU