关于spark on yarn

在Spark中,支持4种运行模式:
1)Local:开发时使用
2)Standalone: 是Spark自带的,如果一个集群是Standalone的话,那么就需要在多台机器上同时部署Spark环境
3)YARN:建议大家在生产上使用该模式,统一使用YARN进行整个集群作业(MR、Spark)的资源调度
4)Mesos

不管使用什么模式,Spark应用程序的代码是一模一样的,只需要在提交的时候通过--master参数来指定我们的运行模式即可

Client
Driver运行在Client端(提交Spark作业的机器)
Client会和请求到的Container进行通信来完成作业的调度和执行,Client是不能退出的
日志信息会在控制台输出:便于我们测试

Cluster
Driver运行在ApplicationMaster中
Client只要提交完作业之后就可以关掉,因为作业已经在YARN上运行了
日志是在终端看不到的,因为日志是在Driver上,只能通过yarn logs -applicationIdapplication_id

spark-submit
--class org.apache.spark.examples.SparkPi
--master yarn
--executor-memory 1G
--num-executors 1
/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/jars/spark-examples_2.11-2.1.0.jar
4

此处的yarn就是我们的yarn client模式
如果是yarn cluster模式的话,yarn-cluster

Exception in thread "main" java.lang.Exception: When running with master 'yarn' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.

如果想运行在YARN之上,那么就必须要设置HADOOP_CONF_DIR或者是YARN_CONF_DIR

1) export HADOOP_CONF_DIR=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop

  1. $SPARK_HOME/conf/spark-env.sh

------- 关于打包

打包时要注意,pom.xml中需要添加如下plugin

<plugin>
    <artifactId>maven-assembly-plugin</artifactId>
    <configuration>
        <archive>
            <manifest>
                <mainClass></mainClass>
            </manifest>
        </archive>
        <descriptorRefs>
            <descriptorRef>jar-with-dependencies</descriptorRef>
        </descriptorRefs>
    </configuration>
</plugin>

然后 mvn assembly:assembly

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容