图像处理-大津二值化算法otsu(2020-07-06)

otsu 大津算法介绍:

OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法。

利用阈值将原图像分成前景,背景两个图象。

前景:用n1,csum,m1来表示在当前阈值下的前景的点数,质量矩,平均灰度

背景:用n2, sum-csum,m2来表示在当前阈值下的背景的点数,质量矩,平均灰度

当取最佳阈值时,背景应该与前景差别最大,关键在于如何选择衡量差别的标准,而在otsu算法中这个衡量差别的标准就是最大类间方差,在本程序中类间方差用sb表示,最大类间方差用fmax

这段引用自百度百科,不是很好懂。

otsu 大津算法原理

otsu 大津算法是一种图像二值化算法,作用是确定将图像分成黑白两个部分的阈值。

将图像背景和前景分成黑白两类很好理解,但是如何确定背景和前景的二值化界限(阈值)呢?

对于不同的图像,这个阈值可能不同,这就需要有一种算法来根据图像的信息自适应地确定这个阈值。

首先,需要将图像转换成灰度图像,255个灰度等级。

可以将图像理解成255个图层,每一层分布了不同的像素,这些像素垂直叠加合成了一张完整的灰度图。

我们的目的就是找到一个合适的灰度值,大于这个值的我们将它称之为背景(灰度值越大像素越黑),小于这个值的我们将它称之为前景(灰度值越小像素越白)。

怎么确定这个值就是我们想要的值呢?

这里引入方差的概念,方差越大,相关性越低,黑白越分明。

我们将每一个灰度值之上下之间的像素的方差求出来不就行了吗?找到方差最大的那个灰度值,那个就是我们想要的二值化分隔阈值。

先定义几个符号代表的意义:

h:图像的宽度

w:图像的高度(h*w 得到图像的像素数量)

t :灰度阈值(我们要求的值,大于这个值的像素我们将它的灰度设置为255,小于的设置为0)

n0:小于阈值的像素,前景

n1:大于等于阈值的像素,背景

n0 + n1 == h * w

w0:前景像素数量占总像素数量的比例

w0 = n0 / (h * w)

w1:背景像素数量占总像素数量的比例

w1 = n1 / (h * w)

w0 + w1 == 1

u0:前景平均灰度

u0 = n0灰度累加和 / n0

u1:背景平均灰度

u1 = n1灰度累加和 / n1

u:平均灰度

u = (n0灰度累加和 + n1灰度累加和) / (h * w) 根据上面的关系

u = w0 * u0 + w1 * u1

g:类间方差(那个灰度的g最大,哪个灰度就是需要的阈值t)

g = w0 * (u0 - u)^2 + w1 * (u1 - u)^2

根据上面的关系,可以推出:(这个一步一步推导就可以得到)

g = w0 * w1 * (u0 - u1) ^ 2

然后,遍历每一个灰度值,找到这个灰度值对应的 g

找到最大的 g 对应的 t

代码实现:


©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。