otsu 大津算法介绍:
OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法。
利用阈值将原图像分成前景,背景两个图象。
前景:用n1,csum,m1来表示在当前阈值下的前景的点数,质量矩,平均灰度
背景:用n2, sum-csum,m2来表示在当前阈值下的背景的点数,质量矩,平均灰度
当取最佳阈值时,背景应该与前景差别最大,关键在于如何选择衡量差别的标准,而在otsu算法中这个衡量差别的标准就是最大类间方差,在本程序中类间方差用sb表示,最大类间方差用fmax
这段引用自百度百科,不是很好懂。
otsu 大津算法原理
otsu 大津算法是一种图像二值化算法,作用是确定将图像分成黑白两个部分的阈值。
将图像背景和前景分成黑白两类很好理解,但是如何确定背景和前景的二值化界限(阈值)呢?
对于不同的图像,这个阈值可能不同,这就需要有一种算法来根据图像的信息自适应地确定这个阈值。
首先,需要将图像转换成灰度图像,255个灰度等级。
可以将图像理解成255个图层,每一层分布了不同的像素,这些像素垂直叠加合成了一张完整的灰度图。
我们的目的就是找到一个合适的灰度值,大于这个值的我们将它称之为背景(灰度值越大像素越黑),小于这个值的我们将它称之为前景(灰度值越小像素越白)。
怎么确定这个值就是我们想要的值呢?
这里引入方差的概念,方差越大,相关性越低,黑白越分明。
我们将每一个灰度值之上下之间的像素的方差求出来不就行了吗?找到方差最大的那个灰度值,那个就是我们想要的二值化分隔阈值。
先定义几个符号代表的意义:
h:图像的宽度
w:图像的高度(h*w 得到图像的像素数量)
t :灰度阈值(我们要求的值,大于这个值的像素我们将它的灰度设置为255,小于的设置为0)
n0:小于阈值的像素,前景
n1:大于等于阈值的像素,背景
n0 + n1 == h * w
w0:前景像素数量占总像素数量的比例
w0 = n0 / (h * w)
w1:背景像素数量占总像素数量的比例
w1 = n1 / (h * w)
w0 + w1 == 1
u0:前景平均灰度
u0 = n0灰度累加和 / n0
u1:背景平均灰度
u1 = n1灰度累加和 / n1
u:平均灰度
u = (n0灰度累加和 + n1灰度累加和) / (h * w) 根据上面的关系
u = w0 * u0 + w1 * u1
g:类间方差(那个灰度的g最大,哪个灰度就是需要的阈值t)
g = w0 * (u0 - u)^2 + w1 * (u1 - u)^2
根据上面的关系,可以推出:(这个一步一步推导就可以得到)
g = w0 * w1 * (u0 - u1) ^ 2
然后,遍历每一个灰度值,找到这个灰度值对应的 g
找到最大的 g 对应的 t
代码实现: