Apache Storm part 2

Example 1 : Word Count

Every time you start a new project, the first thing to do is drawing your topology blueprint.

  1. word count topology data flow

    1.Sentence spout : { "sentence":"my dog has fleas" }
    2.Split sentences bolt :
    { "word" : "my" }
    { "word" : "dog" }
    { "word" : "has" }
    { "word" : "fleas" }
    3.Word count bolt:
    { "word" : "dog", "count" : 5 }

    1. report bolt: for now, we will just use the a reddis source code form udacity.
  2. Implementing the sentence spout

public class RandomSentenceSpout extends BaseRichSpout {
  SpoutOutputCollector _collector;
  Random _rand;


  @Override
  public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
    _collector = collector;
    _rand = new Random();
  }

  @Override
  public void nextTuple() {
    Utils.sleep(100);
    String[] sentences = new String[]{
      "the cow jumped over the moon",
      "an apple a day keeps the doctor away",
      "four score and seven years ago",
      "snow white and the seven dwarfs",
      "i am at two with nature"
      };
    String sentence = sentences[_rand.nextInt(sentences.length)];
    _collector.emit(new Values(sentence));
  }

  @Override
  public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("sentence"));
  }

}
  1. Implementing the split sentence bolt
public class SplitSentenceBolt extends BaseRichBolt{
       private OutputCollector collector;
       public void prepare(Map config, TopologyContext context,
    OutputCollector collector) {
           this.collector = collector;
       }
       public void execute(Tuple tuple) {
           String sentence = tuple.getStringByField("sentence");
           String[] words = sentence.split(" ");
           for(String word : words){
               this.collector.emit(new Values(word));
           }
}
       public void declareOutputFields(OutputFieldsDeclarer declarer) {
           declarer.declare(new Fields("word"));
 } }
  1. implement the word count bolt:
public class WordCountBolt extends BaseRichBolt{
       private OutputCollector collector;
       private HashMap<String, Long> counts = null;
       public void prepare(Map config, TopologyContext context,
               OutputCollector collector) {
           this.collector = collector;
           this.counts = new HashMap<String, Long>();
       }
       public void execute(Tuple tuple) {
           String word = tuple.getStringByField("word");
           Long count = this.counts.get(word);
           if(count == null){
count = 0L; }
           count++;
           this.counts.put(word, count);
           this.collector.emit(new Values(word, count));
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
           declarer.declare(new Fields("word", "count"));
}
}

5 . Implement report bolt

public class ReportBolt extends BaseRichBolt {
       private HashMap<String, Long> counts = null;
       public void prepare(Map config, TopologyContext context,
   OutputCollector collector) {
           this.counts = new HashMap<String, Long>();
       }
       public void execute(Tuple tuple) {
           String word = tuple.getStringByField("word");
           Long count = tuple.getLongByField("count");
           this.counts.put(word, count);
}
       public void declareOutputFields(OutputFieldsDeclarer declarer) {
           // this bolt does not emit anything
}
       public void cleanup() {
           System.out.println("--- FINAL COUNTS ---");
           List<String> keys = new ArrayList<String>();
           keys.addAll(this.counts.keySet());
           Collections.sort(keys);
           for (String key : keys) {
               System.out.println(key + " : " + this.counts.get(key));
           }
           System.out.println("--------------");
       }
 }
  1. Combine this and implement topology
public class WordCountTopology {
       private static final String SENTENCE_SPOUT_ID = "sentence-spout";
       private static final String SPLIT_BOLT_ID = "split-bolt";
       private static final String COUNT_BOLT_ID = "count-bolt";
       private static final String REPORT_BOLT_ID = "report-bolt";
       private static final String TOPOLOGY_NAME = "word-count-topology";
       public static void main(String[] args) throws Exception {
           SentenceSpout spout = new SentenceSpout();
           SplitSentenceBolt splitBolt = new SplitSentenceBolt();
           WordCountBolt countBolt = new WordCountBolt();
           ReportBolt reportBolt = new ReportBolt();
           TopologyBuilder builder = new TopologyBuilder();
           builder.setSpout(SENTENCE_SPOUT_ID, spout);
           // SentenceSpout --> SplitSentenceBolt
           builder.setBolt(SPLIT_BOLT_ID, splitBolt)
                   .shuffleGrouping(SENTENCE_SPOUT_ID);
           // SplitSentenceBolt --> WordCountBolt
           builder.setBolt(COUNT_BOLT_ID, countBolt)
                   .fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
           // WordCountBolt --> ReportBolt
           builder.setBolt(REPORT_BOLT_ID, reportBolt)
                   .globalGrouping(COUNT_BOLT_ID);
           Config config = new Config();
           LocalCluster cluster = new LocalCluster();
           cluster.submitTopology(TOPOLOGY_NAME, config, builder.
   createTopology());
} }
waitForSeconds(10);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown(); 
  1. output:
--- FINAL COUNTS ---
   a : 2726
   ate : 2722
   beverages : 2723
   cold : 2723
   cow : 2726
   dog : 5445
   don't : 5444
   fleas : 5451
   has : 2723
   have : 2722
   homework : 2722
   i : 8175
   like : 5449
   man : 2722
   my : 5445
   the : 2727
   think : 2722
   --------------

Example 2: Trident Topologies

Paste_Image.png
Paste_Image.png

The code is like this:

public class OutbreakDetectionTopology {
       public static StormTopology buildTopology() {
       TridentTopology topology = new TridentTopology();
       DiagnosisEventSpout spout = new DiagnosisEventSpout();
       Stream inputStream = topology.newStream("event", spout);
       inputStream
           .each(new Fields("event"), new DiseaseFilter()))
           .each(new Fields("event"), new CityAssignment(), new         Fields("city"))
           .each(new Fields("event", "city"), new HourAssignment(), new Fields("hour",  "cityDiseaseHour"))
           .groupBy(new Fields("cityDiseaseHour"))
.persistentAggregate(new OutbreakTrendFactory(),
                                  new Count(),
                                  new Fields("count"))
.newValuesStream()
// Detect an outbreak
.each(new Fields("cityDiseaseHour", "count"),
      new OutbreakDetector(), new Fields("alert"))
// Dispatch the alert
.each(new Fields("alert"),
      new DispatchAlert(), new Fields());
}
}

Exercise

Set up

  1. Install VirtualBox for your operating system:https://www.virtualbox.org/wiki/Downloads
  2. Install Vagrant
  3. git clone https://github.com/Udacity/ud381
  4. vagrant up
  5. vagrant ssh
  6. open another terminal, and vagrant ssh
  7. enter the /viz folder, and run python app.py (you can build your own report bolt like above one instead of using this)
  8. Change your source file and display the word count.
  9. Try different group streaming method.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容