一次golang sarama kafka内存占用大的排查经历

环境:

golang sarama kafka
1.15 1.19 v2.5.0,kafka三节点集群,partition数为3

现象:golang微服务内存占用超过1G,查看日志发现大量kafka相关错误日志,继而查看kafka集群,其中一个kafka节点容器挂掉了。
疑问 为什么kafka集群只有一个broker挂了,客户端就大量报错呢

使用pprof查看内存占用

通过beego admin页面获取 mem-1.memprof

go tool pprof mem-1.memprof
web // 使用web命令查看内存占用情 
image.png

可以看到调用栈为 withRecover > backgroundMetadataUpdataer > refreshMeaatdata > RefreshMetada > tryRefreshMetadata > ...

定位问题

  • 通过搜索sarama源码,backgroundMetadataUpdataer 这个函数,只有在sarama NewClient的时候调用。
  • go业务代码在创建Consumer的时候,最终会调用到sarama的NewClient
  • 业务代码中,创建consumer出错会间隔10s一直重试
  • backgroundMetadataUpdataer 中创建一个超时】】定时器,时间间是RefreshFrequency,默认10min ,所以backgroundMetadataUpdataer 会阻塞10min
 // go业务代码中,创建consumer如果出错会间隔10s一直重试
    for {
        consumer, err = cluster.NewConsumer(k.addr, group, topics, k.ccfg)
        if err != nil {
            logs.Error("new kafka consumer is error:", err.Error())
            time.Sleep(10 * time.Second)
            continue
        }
        logs.Info("new kafka consumer is success!")
        break
    }

sarama-cluster: NewClient

func NewConsumer(addrs []string, groupID string, topics []string, config *Config) (*Consumer, error) {
    client, err := NewClient(addrs, config)
    if err != nil {
        return nil, err
    }
    ...
    }
func (client *client) backgroundMetadataUpdater() {
    defer close(client.closed)

    if client.conf.Metadata.RefreshFrequency == time.Duration(0) {
        return
    }

    ticker := time.NewTicker(client.conf.Metadata.RefreshFrequency)
    defer ticker.Stop()

    for {
        select {
        case <-ticker.C:
            if err := client.refreshMetadata(); err != nil {
                Logger.Println("Client background metadata update:", err)
            }
        case <-client.closer:
            return
        }
    }
}

为什么kafka集群只有一个broker,但是NewClient确失败了?
在kafka容器里查看topic, 发现Replicas和Isr只有一个,找到kafka官方配置说明,自动生成的topic需要配置default.replication.factor这个参数,才会生成3副本。

image.png

Review the following settings in the Advanced kafka-broker category, and modify as needed:
auto.create.topics.enable
Enable automatic creation of topics on the server. If this property is set to true, then attempts to produce, consume, or fetch metadata for a nonexistent topic automatically create the topic with the default replication factor and number of partitions. The default is enabled.
default.replication.factor
Specifies default replication factors for automatically created topics. For high availability production systems, you should set this value to at least 3.
num.partitions
Specifies the default number of log partitions per topic, for automatically created topics. The default value is 1. Change this setting based on the requirements related to your topic and partition design.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容