Python3 - 通过某个字段将记录分组

问题

你有一个字典或者实例的序列,然后你想根据某个特定的字段比如 date 来分组迭代访问。

解决方案

使用 itertools.groupby() 函数对于这样的数据分组操作非常实用。假设字典列表:

rows = [
    {'address': '5412 N CLARK', 'date': '07/01/2012'},
    {'address': '5148 N CLARK', 'date': '07/04/2012'},
    {'address': '5800 E 58TH', 'date': '07/02/2012'},
    {'address': '2122 N CLARK', 'date': '07/03/2012'},
    {'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'},
    {'address': '1060 W ADDISON', 'date': '07/02/2012'},
    {'address': '4801 N BROADWAY', 'date': '07/01/2012'},
    {'address': '1039 W GRANVILLE', 'date': '07/04/2012'},
]

对 date 分组后的数据进行迭代。首先需要按照指定的字段(date)排序, 然后调用 itertools.groupby() 函数进行遍历:

from operator import itemgetter
from itertools import groupby

rows.sort(key=itemgetter('date'))
for date, items in groupby(rows, key=itemgetter('date')):
    print(date)
    for i in items:
        print(' ', i)

07/01/2012
  {'address': '5412 N CLARK', 'date': '07/01/2012'}
  {'address': '4801 N BROADWAY', 'date': '07/01/2012'}
07/02/2012
  {'address': '5800 E 58TH', 'date': '07/02/2012'}
  {'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'}
  {'address': '1060 W ADDISON', 'date': '07/02/2012'}
07/03/2012
  {'address': '2122 N CLARK', 'date': '07/03/2012'}
07/04/2012
  {'address': '5148 N CLARK', 'date': '07/04/2012'}
  {'address': '1039 W GRANVILLE', 'date': '07/04/2012'}

讨论

groupby() 函数扫描整个序列,并且查找连续相同值(或者根据 key 函数返回相同值)的元素序列。 在每次迭代的时候,它会返回一个值和一个迭代器对象, 这个迭代器对象可以生成元素值全部相等的组中所有对象。

一个非常重要的准备步骤是要根据指定的字段将数据排序。 因为 groupby() 仅仅检查连续的元素,如果事先并没有排序完成的话,分组函数将得不到想要的结果。

如果仅仅只是想根据 date 字段将数据分组到一个大的数据结构中去,并且允许随机访问, 那么最好使用 defaultdict() 来构建一个多值字典,通过遍历,可以很轻松地对每个指定日期访问对应的记录:

from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:
    rows_by_date[row['date']].append(row)

for i in rows_by_date['07/01/2012']:
    print(i)

{'address': '5412 N CLARK', 'date': '07/01/2012'}
{'address': '4801 N BROADWAY', 'date': '07/01/2012'}

在上面这个例子中,没有必要先将记录排序。因此,如果对内存占用不是很关心, 这种方式会比先排序然后再通过 groupby() 函数迭代的方式运行得快一些。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,002评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,777评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,341评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,085评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,110评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,868评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,528评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,422评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,938评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,067评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,199评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,877评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,540评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,079评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,192评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,514评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,190评论 2 357

推荐阅读更多精彩内容

  • PYTHON-进阶-ITERTOOLS模块小结转自wklken:http://wklken.me/posts/20...
    C_Y_阅读 970评论 0 2
  • 1. 迭代对象解压赋值 解压赋值操作可以应用到任何迭代对象上,如:列表、元组、字符串、文件对象、迭代器、生成器。 ...
    faris_shi阅读 1,118评论 0 0
  • 前言 身处混沌矛盾的时代,人越来越彷徨不安。你和我一样,都在深夜里对明天所要面对的一切未知而焦虑、多次尝试思考人生...
    way菜畦阅读 1,246评论 2 6
  • 她活了多大岁数了?她自己已经是弥留之际,所以想这个似乎也没有多少意思。在这间充满屎尿味道,阴暗潮湿的土坯屋里,她看...
    筱阿诚阅读 467评论 0 0
  • 这是一处清丽静穆的地方,拾阶而上,萦绕耳际的便是悠扬婉转的音乐,伴随而行的除了曼妙的音乐还有一队老年游客健硕的步伐...
    禅芯阅读 3,770评论 0 7