阿里云的Canal框架实现Redis与Mysql同步原理及代码示例

上一篇 <<<Redis与MySQL的数据同步解决方案
下一篇 >>>阿里云的Canal框架配置


git地址:https://github.com/alibaba/canal
Canal目前支持三种监听通讯模式 TCP、KAFKA/Rocketmq

核心原理

a.canal会启动一个Server端作为一个mysql从节点拉取mysql主的节点最新的bin文件
b.只要mysql主节点的bin文件发送变化都会增量的形式通知给我们的canalServer端
c.canalServer在通知给canalServerClient,canalServerClient自己手动配置刷新Redis、kafka等各种客户端。

Canal通过TCP实现同步

Mysql配置:
server_id=177  ###服务器id
log-bin=mysql-bin   ###开启日志文件
binlog-format=ROW #选择row模式

Canal服务端配置: canal.properties
#通讯端口
canal.port = 11111
#目标支持:client、rocketmq、kafka

#可以使用单独的账号信息
drop user 'canal'@'%';
CREATE USER 'canal'@'%' IDENTIFIED BY 'canal';
grant all privileges on *.* to 'canal'@'%' identified by 'canal'; 
flush privileges;

主数据源配置:example/ instance.properties
canal.instance.master.address=10.211.55.26:3306
canal.instance.dbUsername=root
canal.instance.dbPassword=root

public class CanalClient {

    public static void main(String args[]) {
        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("10.211.55.16",
                11111), "example", "", "");
        int batchSize = 100;
        try {
            connector.connect();
            connector.subscribe("test.*");
            connector.rollback();
            while (true) {
                // 获取指定数量的数据
                Message message = connector.getWithoutAck(batchSize);
                long batchId = message.getId();
                int size = message.getEntries().size();
                if (batchId == -1 || size == 0) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                } else {
                    printEntry(message.getEntries());
                }
                // 提交确认
                connector.ack(batchId);
                // connector.rollback(batchId); // 处理失败, 回滚数据
            }
        } finally {
            connector.disconnect();
        }
    }

    private static void printEntry(List<Entry> entrys) {
        for (Entry entry : entrys) {
            if (entry.getEntryType() == EntryType.TRANSACTIONBEGIN || entry.getEntryType() == EntryType.TRANSACTIONEND) {
                continue;
            }
            RowChange rowChage = null;
            try {
                rowChage = RowChange.parseFrom(entry.getStoreValue());
            } catch (Exception e) {
                throw new RuntimeException("ERROR ## parser of eromanga-event has an error , data:" + entry.toString(),
                        e);
            }
            EventType eventType = rowChage.getEventType();
            System.out.println(String.format("================> binlog[%s:%s] , name[%s,%s] , eventType : %s",
                    entry.getHeader().getLogfileName(), entry.getHeader().getLogfileOffset(),
                    entry.getHeader().getSchemaName(), entry.getHeader().getTableName(),
                    eventType));

            for (RowData rowData : rowChage.getRowDatasList()) {
                if (eventType == EventType.DELETE) {
                    redisDelete(rowData.getBeforeColumnsList());
                } else if (eventType == EventType.INSERT) {
                    redisInsert(rowData.getAfterColumnsList());
                } else {
                    System.out.println("-------> before");
                    printColumn(rowData.getBeforeColumnsList());
                    System.out.println("-------> after");
                    redisUpdate(rowData.getAfterColumnsList());
                }
            }
        }
    }

    private static void printColumn(List<Column> columns) {
        for (Column column : columns) {
            System.out.println(column.getName() + " : " + column.getValue() + "    update=" + column.getUpdated());
        }
    }

    private static void redisInsert(List<Column> columns) {
        JSONObject json = new JSONObject();
        for (Column column : columns) {
            json.put(column.getName(), column.getValue());
        }
        if (columns.size() > 0) {
            RedisUtil.stringSet(columns.get(0).getValue(), json.toJSONString());
        }
    }

    private static void redisUpdate(List<Column> columns) {
        JSONObject json = new JSONObject();
        for (Column column : columns) {
            json.put(column.getName(), column.getValue());
        }
        if (columns.size() > 0) {
            RedisUtil.stringSet(columns.get(0).getValue(), json.toJSONString());
        }
    }

    private static void redisDelete(List<Column> columns) {
        JSONObject json = new JSONObject();
        for (Column column : columns) {
            json.put(column.getName(), column.getValue());
        }
        if (columns.size() > 0) {
            RedisUtil.delKey(columns.get(0).getValue());
        }
    }
}

结果打印:
================> binlog[mysql-bin.000015:457] , name[test,my_tb] , eventType : CREATE
================> binlog[mysql-bin.000015:324] , name[test,ttt] , eventType : INSERT
================> binlog[mysql-bin.000015:757] , name[test,ttt] , eventType : UPDATE
================> binlog[mysql-bin.000015:1025] , name[test,ttt] , eventType : DELETE

Canal通过kafka实现同步

配置信息修改
1.修改 example/instance.properties 
canal.mq.topic=maikt-topic
2.修改 canal.properties
# tcp, kafka, RocketMQ
canal.serverMode = kafka
canal.mq.servers = 127.0.0.1:9092

<!-- springBoot集成kafka -->
<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

# kafka
spring:
  kafka:
    # kafka服务器地址(可以多个)
    bootstrap-servers: 127.0.0.1:9092
    consumer:
      # 指定一个默认的组名
      group-id: kafka2
      # earliest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
      # latest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据
      # none:topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
      auto-offset-reset: earliest
      # key/value的反序列化
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
    producer:
      # key/value的序列化
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      # 批量抓取
      batch-size: 65536
      # 缓存容量
      buffer-memory: 524288
  redis:
    host: 47.96.105.42
#    password:
    port: 6369
    database: 10

@KafkaListener(topics = "jarye-topic")
public void receive(ConsumerRecord<?, ?> consumer) {
    System.out.println("topic名称:" + consumer.topic() + ",key:" +
            consumer.key() + "," +
            "分区位置:" + consumer.partition()
            + ", 下标" + consumer.offset()+","+consumer.value());
}

推荐阅读:
<<<分布式缓存与本地缓存的区别
<<<Ehcache基础知识
<<<SpringBoot整合Ehcache
<<<Redis的5种数据类型
<<<Redis存放实体对象的方式及区别
<<<Redis的应用场景汇总
<<<Redis高效及线程安全的真正原因
<<<Redis为啥要分为16个库
<<<RDB和AOF持久化方式的区别
<<<Redis与数据库的一致性解决方案
<<<SpringBoot整合Redis的注解版本完成数据缓存
<<<Redis的淘汰策略
<<<Redis的事务操作(Mult和Watch)知识点
<<<Redis的过期机制使用场景示例
<<<Redis实现分布式锁的原理分析
<<<Redis分布式锁的实现代码示例
<<<使用Redisson工具实现分布式锁
<<<Redis集群模式之主从复制原理及存在的缺陷
<<<Redis集群模式之哨兵模式
<<<Redis集群模式之Cluster去中心化分片集群
<<<Linux环境下安装单机Redis
<<<Redis Cluster集群环境搭建
<<<Redis Cluster如何动态扩容与缩容
<<<Redis Cluster主从节点自动切换
<<<Redis集群模式的类型和缺陷汇总
<<<Redis缓存的穿透、击穿和雪崩效应
<<<Redis解决穿透击穿问题时使用的布隆过滤器知识点
<<<Redis与MySQL的数据同步解决方案
<<<阿里云的Canal框架配置
<<<Redis官方提出的redlock分布式锁
<<<Redis的调优设置
<<<Redis常见问题汇总

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容