目标检测—HOG(方向梯度直方图)特征

HOG特征

方向梯度直方图(Histogram of Oriented Gradient, HOG)特征在计算机视觉中用于物体检测,通过计算图像局部区域的梯度直方图来构成特征

一、主要原理

梯度主要位于边缘区域,因此我们能容易通过梯度的方向密度分布来获取边缘信息,进而推断目标的表象和形状

二、实现方法

将目标表图像分割为细胞单元(cell),计算每个cell各像素点的梯度(边缘方向)直方图,组合这些直方图得到特征描述器。

三、性能优化

将若干cell组成更大范围的block,计算block中各直方图的密度,根据密度对block中的cell单元进行归一化(normalization),从而在光照变化和阴影上取得更好效果。

四、优点

  • 与其他特征描述方法相比,HOG在图像局部单元格上操作,能有效抵抗图像几何和光学上的形变(这两种形变在更大的空间领域上出现)。
  • 其次在粗的空域抽样、精细的方向抽样以及较强的局部光学归一化等条件,HOG特征能在进行人体动作检测时忽略细微的干扰肢体动作。

HOG特征提取算法

  1. 对目标图像灰度化(颜色信息作用不大)
  2. 采用Gamma校正法对输入图像进行颜色空间的归一化,从而调节图像对比度,降低图像局部阴影和光照以及噪声造成的影响
  3. 计算图像每个像素的梯度(大小和方向)以捕获边缘轮廓信息,同时进一步弱化光照干扰。
  4. 将图像分割为cell单元(如6*6像素/cell)
  5. 将若干cell组成block(如33cell/block),组合block内所有cell的descriptor特征,得到该block的HOG特征descriptor*。
  6. 将图像内所有block的HOG特征的descriptor串联起来,得到检测目标可供分类使用的特征向量

补充说明

1. 图像中像素点的梯度计算
  • 用[-1,0,1]梯度算子对原图像做卷积运算,得到x方向的梯度分量gradscalx
  • [1,0,-1]T梯度算子对原图像做卷积运算,得到y方向(竖直方向,以向上为正方向)的梯度分量gradscaly
  • 用公式计算该像素点的梯度和方向
2. 为每个cell构造梯度方向直方图HOG
  • 如每个cell为6*6像素,使用 9个bin的直方图统计这个cell的梯度信息
  • 将cell的梯度方向360°等分为9个方向块,如某像素梯度方向落与20-40°,梯度大小为2,则直方图第二个bin计数+2(梯度方向影响投影到哪个bin,梯度大小影响投影的权值),最后得到该cell的梯度方向直方图,对应9维特征向量(9个bin)
  • 一个block内所有cell的特征向量串联起来便得到该block的HOG特征向量(9*9=81维)。
  • 行人检测参数通常设置为:
    6✖️6pixel/cell
    3✖️3cell/block
    9✖️bin(直方图通道、即一个cell为9维特征向量)
参考资料

https://www.cnblogs.com/zhehan54/p/6723956.html
https://www.jianshu.com/p/354acdcbae3f
https://blog.csdn.net/zhanghenan123/article/details/80853523

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342