题目地址
https://leetcode-cn.com/problems/unique-binary-search-trees/
题目描述
给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
题解
递归解法
定义递归函数
public int build(int left, int right)
,用来描述通过[left, right]
构建的所有二叉搜索树的数量。
class Solution {
public int numTrees(int n) {
return build(1, n);
}
public int build(int left, int right) {
if (left == right) return 1;
if (left > right) return 1; // null 子树也属于一棵树
int numTrees = 0;
for (int i = left; i <= right; ++ i) {
// [left, i-1] 表示左子树
int numLeftTrees = build(left, i-1);
// [i+1, right] 表示右子树
int numRightTrees = build(i+1, right);
numTrees += numLeftTrees * numRightTrees;
}
return numTrees;
}
}
耗时非常长
通过 memo 剪枝
class Solution {
public int numTrees(int n) {
int[][] memo = new int[n+1][n+1];
for (int i = 0; i <= n; i++) {
Arrays.fill(memo[i], -1);
}
return build(1, n, memo);
}
public int build(int left, int right, int[][] memo) {
if (left == right) return 1;
if (left > right) return 1; // null 子树也属于一棵树
if (memo[left][right] != -1) {
return memo[left][right];
}
int numTrees = 0;
for (int i = left; i <= right; ++ i) {
// [left, i-1] 表示左子树
int numLeftTrees = build(left, i-1, memo);
// [i+1, right] 表示右子树
int numRightTrees = build(i+1, right, memo);
numTrees += numLeftTrees * numRightTrees;
}
memo[left][right] = numTrees;
return numTrees;
}
}
执行时间瞬间下降。