Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.
Note:
If n is the length of array, assume the following constraints are satisfied:
1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)
Examples:
Input:
nums = [7,2,5,10,8]
m = 2
Output:
18
Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.
http://www.cnblogs.com/grandyang/p/5933787.html
https://leetcode.com/problems/split-array-largest-sum/discuss/89817
Solution:
思路:
Use binary search to approach the correct answer. We have l = max number of array; r = sum of all numbers in the array;Every time we do mid = (l + r) / 2;
接下来要做的是找出 和最大 且 小于等于mid的子数组的个数
每组最大为target,
如果我们无法分为m组,说明target偏大,再二分调整;
反之,说明m偏小,再二分调整
Time Complexity: O() Space Complexity: O()
Solution Code:
public class Solution {
public int splitArray(int[] nums, int m) {
int max = 0; long sum = 0;
for (int num : nums) {
max = Math.max(num, max);
sum += num;
}
if (m == 1) return (int)sum;
//binary search
long l = max; long r = sum;
while (l <= r) {
long mid = (l + r)/ 2;
if (valid(mid, nums, m)) {
r = mid - 1;
} else {
l = mid + 1;
}
}
return (int)l;
}
public boolean valid(long target, int[] nums, int m) {
int count = 1;
long total = 0;
for(int num : nums) {
total += num;
if (total > target) {
total = num;
count++;
if (count > m) {
return false;
}
}
}
return true;
}
}