Xcell实战

xCell is a recently published method based on ssGSEA that estimates the abundance scores of 64 immune cell types, including adaptive and innate immune cells, hematopoietic progenitors, epithelial cells, and extracellular matrix cells

xcell 是基于ssGSEA(single-sample GSEA)
ssGSEA顾名思义是一种特殊的GSEA,它主要针对单样本无法做GSEA而提出的一种实现方法,原理上与GSEA是类似的,不同的是GSEA需要准备表达谱文件即gct,根据表达谱文件计算每个基因的rank值
参考网址https://shengxin.ren/article/403https://support.bioconductor.org/p/98463/

关于Xcell找对网址很重要,我一开始找错了地方

https://github.com/dviraran/xCell
首先看read.me 很开心是我要的东西

image.png

安装这个之前经常报错,要安装很多别的辅助包

install.packages('Rcpp')#########安装各类程序包
devtools::install_github('dviraran/xCell')
image.png

安装的时候还会有错误。


安装好的这一刻,还是很开心的。

image.png

使用方法

第一步 计算xCell

library(xCell)
exprMatrix = read.table(file = '/Users/chenyuqiao/Desktop/TCGA-LUAD.htseq_counts.tsv',header=TRUE,row.names=1, as.is=TRUE)
xCellAnalysis(exprMatrix)
data imput
library(xCell)
exprMatrix = read.table(file = '/Users/chenyuqiao/Desktop/TCGA-LUAD.htseq_counts.tsv',header=TRUE,row.names=1, as.is=TRUE)

###exprMatrix<- exprMatrix[1:10,1:10]
Ensemble_ID<- rownames(exprMatrix)
ID<- strsplit(Ensemble_ID, "[.]")
str(ID)
IDlast<- sapply(ID, "[", 1)
exprMatrix$Ensemble_ID<- IDlast
row.names(exprMatrix)<- exprMatrix$Ensemble_ID
save(exprMatrix, file = 'TCGA.Rdata')
load(file = 'TCGA.Rdata')


####library(clusterProfiler)
library(org.Hs.eg.db)
ls("package:org.Hs.eg.db")
g2s=toTable(org.Hs.egSYMBOL);head(g2s)
g2e=toTable(org.Hs.egENSEMBL);head(g2e)
tmp=merge(g2e,g2s,by='gene_id')
head(tmp)
colnames(exprMatrix)[ncol(exprMatrix)] <- c("ensembl_id")###################重命名Ensemble_ID 便于后面merge
exprMatrix[1:4,1:4]
exprMatrix<- merge(tmp,exprMatrix,by='ensembl_id')
exprMatrix[1:4,1:4]
exprMatrix<- exprMatrix[,- c(1,2)]
exprMatrix=exprMatrix[!duplicated(exprMatrix$symbol),]
row.names(exprMatrix)<- exprMatrix[,1]
exprMatrix<- exprMatrix[,-1]
exprMatrix[1:4,1:4]
xCellAnalysis(exprMatrix)####################一句话就分析完成了
##save(results,file = 'Xcell_result.Rdata')#############需要重新修改

第二步:批量生存分析

load(file = 'Xcell_result.Rdata')
result<- as.data.frame(result)
library(dplyr)
library(tidyverse)

TCGA.LUAD.GDC_phenotype <- read.delim("TCGA-LUAD.GDC_phenotype.tsv")

#colnames(TCGA.LUAD.GDC_phenotype)
#head(TCGA.LUAD.GDC_phenotype)

LUAD_Pheno<- select(TCGA.LUAD.GDC_phenotype, "submitter_id.samples", "vital_status.diagnoses", "days_to_death.diagnoses", "days_to_last_follow_up.diagnoses", "pathologic_N", "pathologic_M", "days_to_new_tumor_event_after_initial_treatment")
LUAD_Pheno<- LUAD_Pheno[grep('01A',LUAD_Pheno$submitter_id.samples),]  #####只筛选01A的   01A代表肿瘤
LUAD_Pheno[is.na(LUAD_Pheno)]<- 0
LUAD_Pheno$PFS_status<- ifelse((LUAD_Pheno$days_to_new_tumor_event_after_initial_treatment == 0 & LUAD_Pheno$days_to_death.diagnoses == 0), 0,1)
##################################
LUAD_Pheno$OS<- ifelse(LUAD_Pheno$days_to_last_follow_up.diagnoses > LUAD_Pheno$days_to_death.diagnoses, LUAD_Pheno$days_to_last_follow_up.diagnoses,LUAD_Pheno$days_to_death.diagnoses)
LUAD_Pheno$PFS<- ifelse(LUAD_Pheno$days_to_new_tumor_event_after_initial_treatment == 0, LUAD_Pheno$OS ,LUAD_Pheno$days_to_new_tumor_event_after_initial_treatment)
LUAD_Pheno$OS_status<- as.factor(LUAD_Pheno$vital_status.diagnoses)
#############################设计好分组




#############################生存曲线

firstdata<- result  ###############expre
firstdata$ID<- rownames(firstdata)
gene<- row.names(firstdata)
#######select only gene to analysis
library(survminer)
library(survival)
library(ggplot2)
library(dplyr)
for (x in gene) {
  RNA_seq_data<-filter(firstdata, firstdata$ID == x)
  RNA_seq_data<- t(RNA_seq_data)
  RNA_seq_data<- as.data.frame(RNA_seq_data)
  # str(RNA_seq_data)
  # colnames(LUAD_Pheno)
  RNA_seq_data$submitter_id.samples<- row.names(RNA_seq_data)
  colnames(RNA_seq_data)<- c("Expressionvalue","submitter_id.samples")
  LUAD_Pheno$submitter_id.samples<- as.character(LUAD_Pheno$submitter_id.samples)
  LUAD_Pheno$submitter_id.samples<- sub('-', '.', LUAD_Pheno$submitter_id.samples)#############- replaced by .
  LUAD_Pheno$submitter_id.samples<- sub('-', '.', LUAD_Pheno$submitter_id.samples)#############- replaced by .
  LUAD_Pheno$submitter_id.samples<- sub('-', '.', LUAD_Pheno$submitter_id.samples)#############- replaced by .
  LUAD_Pheno$submitter_id.samples<- sub('-', '.', LUAD_Pheno$submitter_id.samples)#############- replaced by .
  finaldata<- inner_join(LUAD_Pheno,RNA_seq_data, by = "submitter_id.samples")
  finaldata$PFS_status<- as.character(finaldata$PFS_status)
  finaldata$PFS_status<- as.numeric(as.factor(finaldata$PFS_status))
  finaldata$Expressionvalue<- as.numeric(as.character(finaldata$Expressionvalue))
  finaldata$group<- ifelse(finaldata$Expressionvalue>median(finaldata$Expressionvalue),'high','low')
  library(survminer)
  library(survival)
  fit <- survfit(Surv(finaldata$PFS,finaldata$PFS_status)~finaldata$group, data=finaldata) 
  summary(fit)
  pp<- ggsurvplot(fit, data = finaldata, conf.int = F, pval = TRUE,
                  xlim = c(0,2000), # present narrower X axis, but not affect
                  # survival estimates. 
                  xlab = "Time in days", # customize X axis label. 
                  break.time.by = 200) # break X axis in time intervals by 500. 
  ggsave(filename = paste("plot_",x,".pdf",sep = ""))
  print(x)
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容

  • 前些日子从@张鑫旭微博处得一份推荐(Front-end-tutorial),号称最全的资源教程-前端涉及的所有知识...
    谷子多阅读 4,171评论 0 44
  • 写作如同挠痒,首先要找对位置,比如左背痒你不能挠到右腰去。所以一定要抓住主题,不能跑偏。再个就是要拿捏好轻重,找准...
    群星咖啡馆阅读 627评论 0 0
  • 上篇提到了投资的第一性原理,即我们在投资时应该秉承的理念是什么? 本篇来谈,我们如何在投资时,去找到那些好的资产,...
    骏少的宅院阅读 447评论 0 2
  • 傍晚时分遇到了初中的同学,他目前在做宝健养生,开着医疗门诊,还是有国家营养师资格的讲师。好久不见,聊着聊着就发...
    王宇歌阅读 92评论 0 1
  • 一夜春风出新芽, 放眼望出遍地花。 哪是花来哪是叶? 近观细辨认识它! 红黄紫绿争妖艳, 微风轻抚媚人间。 春暖花...
    深知绿叶阅读 302评论 0 2