Spark连接JDBC数据源

在实际的项目环境中,成熟的技术体系对关系型数据库的依赖远远超过hdfs,而且对大数据运算的结果,实践中也倾向于保存到数据库中,以便进行多种方式的可视化。所以本次实践主要完成spark从mysql中读取和写入数据。一般这个操作有两种方式,一种是自己建立jdbc连接,像一般数据库操作一样的写法,一种就是利用spark自带的jdbc操作函数。

首先要把mysql jdbc connector的jar包上传到集群中每台机器的spark/jars目录,这是一个讨巧的办法,因为spark运行之前一定把这里面所有的jar都加到CALSS_PATH里面去了。

通过spark.read.jdbc读取出来的返回值是DataFrame,如下代码所示。

val rfidCardMap = spark.read.jdbc(mysqlHelper.DB_URL_R,"t_rfid_card",Array("org_id="+ ORG_ID), mysqlHelper.PROPERTIES).map(row => {
  (row.getAs[String]("card_id"), row.getAs[String]("card_label"))
}).rdd.collect() toMap

此函数需要传入参数依次为:数据库连接url,表名,过滤条件表达式列表,带有用户名密码信息的属性对象。读取了数据之后,形成一个(String,String)对象返回。这里有两个要注意的:

  1. getAs的类型必须和数据库中列的类型严格匹配
  2. 返回元组类型的对象比返回自定义类的对象写法要轻松一些。如果是返回自定义类的对象,编译会出错,一般说法是语句之前加入“import spark.implicits._”会有效,但未必见得。尚待进一步探索。

如下是一个比较复杂的解析处理代码示例。

val teamWeightMapRDD = dfMedicalWaste.map(row => {

  (rfidCardMap.get(row.getAs[String]("team_id")) toString,

  sdf.format(new Date(row.getAs[Timestamp]("rec_ts").getTime)) toInt,

  row.getAs[Double]("mw_weight"))

}).rdd.cache()

这里sdf就是java里面常用的SimpleDateFormat,它把一个时间戳字段转化成了6个长度的整型。

处理完成后,将结果回写数据库时采用的是本地jdbc连接写法,这块内容很普通了。

这次实践有个特别清晰的理解就是scala的类型推断,由于要统计某个地点一段时间之内的产量总和、平均产量、最大和最小单位时间产量,使用到了DoubleRDDFunctions,代码如下:

val weightArrayRDD = teamWeightMapRDD.filter(teamWeight => {

  teamWeight._1 == teamName && teamWeight._2 >= week._1 && teamWeight._2 < week._2

}).map(teamWeight => {

  (teamWeight._2, teamWeight._3)

}).reduceByKey((a, b) =>

  a + b

).map(item => {

  item._2

}).cache()

使用的时候如下:

line.append(weightArrayRDD sum).append("\t")

line.append(weightArrayRDD mean).append("\t")

line.append(weightArrayRDD max).append("\t")

line.append(weightArrayRDD min).append("\t")

scala会根据返回值类型进行类型推断,从而匹配可以使用的函数,同样是RDD或者DataFram,包含的类型不同,可以使用的函数也不同,这一切都是透明的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容