日志实时收集之FileBeat+Kafka

之前,我们的某一个业务用于实时日志收集处理的架构大概是这样的:


在日志的产生端(LogServer服务器),都部署了FlumeAgent,实时监控产生的日志,然后发送至Kafka。经过观察,每一个FlumeAgent都占用了较大的系统资源(至少会占用一颗CPU 50%以上的资源)。而另外一个业务,LogServer压力大,CPU资源尤其紧张,如果要实时收集分析日志,那么就需要一个更轻量级、占用资源更少的日志收集框架,于是我试用了一下Filebeat。

Filebeat是一个开源的文本日志收集器,采用go语言开发,它重构了logstash采集器源码,安装在日志产生服务器上来监视日志目录或者特定的日志文件,并把他们发送到logstash、elasticsearch以及kafka上。Filebeat是代替logstash-forwarder的数据采集方案,原因是logstash运行在jvm上,对服务器的资源消耗比较大(Flume也是如此)。正因为Filebeat如此轻量级,因此不要奢望它能在日志收集过程中做更多清洗和转换的工作,它只负责一件事,就是高效可靠的传输日志数据,至于清洗和转换,可以在后续的过程中进行。

Filebeat官网地址为:https://www.elastic.co/guide/en/beats/filebeat/current/index.html  你可以在该地址中下载Filebeat和查看文档。

Filebeat安装配置

Filebeat的安装和配置非常简单。

下载filebeat-5.6.3-linux-x86_64.tar.gz,并解压。

进入filebeat-5.6.3-linux-x86_64目录,编辑配置文件filebeat.yml

配置input,监控日志文件:

filebeat.prospectors:

- input_type: log

paths:

- /data/dmp/openresty/logs/dmp_intf_*.log

配置output到Kafka

#—————————– Kafka output ——————————–

output.kafka:

hosts: ["datadev1:9092"]

topic: lxw1234

required_acks: 1

PS:假设你的Kafka已经安装配置好,并建了Topic。

更多的配置选项,请参考官方文档。

需要大数据学习资料和交流学习的同学可以加大数据学习群:724693112 有免费资料分享和一群学习大数据的小伙伴一起努力

Filebeat启动

在filebeat-5.6.3-linux-x86_64目录下,执行命令:

./filebeat -e -c filebeat.yml 来启动Filebeat。


启动后,Filebeat开始监控input配置中的日志文件,并将消息发送至Kafka。

你可以在Kafka中启动Consumer来查看:

./kafka-console-consumer.sh –bootstrap-server localhost:9092 –topic lxw1234 –from-beginning

Filebeat的消息格式

原始日志中,日志格式如下:

2017-11-09T15:18:05+08:00|~|127.0.0.1|~|-|~|hy_xyz|~|200|~|0.002


Filebeat会将消息封装成一个JSON串,除了包含原始日志,还包含了其他信息。


@timestamp:消息发送时间

beat:Filebeat运行主机和版本信息

fields:用户自定义的一些变量和值,非常有用,类似于Flume的静态拦截器

input_type:input类型

message:原始日志内容

offset:此条消息在原始日志文件中的offset

source:日志文件


另外, Filebeat对CPU的占用情况:


经过初步试用,以下方面的问题还有待继续测试:

数据可靠性:是否存在日志数据丢失、重复发送情况;

能否对Filebeat的消息格式进行定制,去掉一些冗余无用的项。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容