Leetcode - House Robber III

My code:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    HashMap<TreeNode, Integer> cache = new HashMap<TreeNode, Integer>();
    public int rob(TreeNode root) {
        if (root == null) {
            return 0;
        }
        else if (cache.containsKey(root)) {
            return cache.get(root);
        }
        
        int val = 0;
        if (root.left != null) {
            val += rob(root.left.left) + rob(root.left.right);
        }
        if (root.right != null) {
            val += rob(root.right.left) + rob(root.right.right);
        }
        
        int max = Math.max(val + root.val, rob(root.left) + rob(root.right));
        cache.put(root, max);
        return max;
    }
}

仔细研读:
https://discuss.leetcode.com/topic/39659/easy-understanding-solution-with-dfs/2

这道题目没做出来,然后看了答案,觉得这篇解析说的很棒。
一开始的思路应该是很自然的,但我却没有想到。

rob(TreeNode root)
返回以当前结点作为root,可以抢到的最多的钱。
这个结点,可能偷,也可能没偷。

那么这个rob(root) 的终止条件是什么?
肯定是 root == null
那么递推式呢?
或者说,和下面层与层之间的关系如何确定呢?

如果结点被抢了,那么不能偷left, right了。
所以

rob(root) = rob(root.left.left) + rob(root.left.right) + 
            rob(root.right.left) + rob(root.right.right) + root.val;

注意,这里,

rob(root.left) + rob(root.right)
可能 =
rob(root.left.left) + rob(root.left.right) + rob(root.right.left) + rob(root.right.right) + root.val;
如果 偷了root 左右,还没有直接投 root 孙子赚得多

所以这里我们可以看出,这个dp,状态与状态之间,互相联系,
rob(root) 需要依靠rob(left.left), rob(left.right)
rob(left) 也需要 依靠 rob(left.left), rob(left.right)
重复就来了。下面再细说。

从这里可以看出。

rob(root)
= root.val + 
Math.max(
  rob(root.left) + rob(root.right),
  rob(root.left.left) + rob(root.left.right) + rob(root.right.left) + rob(root.right.right)
);

递推式有了,我们就可以一层层往下计算了。
其实也是 bottom up

然后发现速度特别慢,原因就是刚刚说的,有很多东西都重复计算了,然后状态之间互相焦灼,互相相关,有许多东西需要算好几遍。

然后一个工程上的手段是,
剪枝
cut edge

剪枝的本质有两点。

  1. 当从当前状态下去,以后无论如何变化,都不可能获得我们需要的那个状态的话,那就直接停止吧,不用走到无路可走的时候再回头

  2. cache,有些已经计算过的最优解,全部存在cache中。这样下次要用的时候避免计算。

这里采用了方法二进行了剪枝,于是有了上面的代码。
然后速度一下快多了。

**
但是,剪枝虽然可以很好的降低时间,但是无法降低时间复杂度。
也就是说,他可以把时间复杂度的常数系数降得很多,但是无法从根本上改良这个算法。
导致的问题是:
1 . 当数据量越来越大的时候,剪枝的dp仍然有极限,仍然会很快就出现延迟超长的情况。
2 . recursion会导致stack overflow,即使剪枝仍然需要进入一层栈去取出cache,所以当输入数据变得越来越大的时候,剪枝也会很快爆栈
**

举例:

1 . 斐波那契数列。
第一种做法,设置一个数组cache

long[] cache;
private int counter = 0;
private int hit = 0;
public long f(int n) {
    counter = 0;
    hit = 0;
    if (n < 0) {
        return 0;
    }
    cache = new long[n + 1];
    cache[0] = 1;
    return f(n - 1, cache) + f(n - 2, cache);
}

private long f(int n, long[] cache) {
    counter++;
    if (n < 0) {
        return 0;
    }
    else if (cache[n] != 0) {
        hit++;
        return cache[n];
    }
    else {
        long ret = f(n - 1, cache) + f(n - 2, cache);
        cache[n] = ret;
        return ret;
    }
}

2 . iteration dp

public long f2(int n) {
    if (n < 0) {
        return 0;
    }
    else if (n < 2) {
        return 1;
    }
    long pre = 1;
    long next = 1;
    for (int i = 2; i <= n; i++) {
        long sum = pre + next;
        pre = next;
        next = sum;
    }
    return next;
}

然后测试相同的输入下,时间的对比,如下:

Screen Shot 2016-09-08 at 11.20.57 PM.png

第一个点可以当做噪音点,因为CPU可能没有引起足够重视,
所以 f(5) 跑的时间比 f(10) 还要大很多

但是看总体趋势,我们还是可以发现,即使加了cache,当输入变大的时候,增大的趋势,也是很陡峭的。
而iteration增大的趋势则是比较平缓的

为了做这个实验,破费了些时间。
但画出来后,发现竟然如此完美。
perfect~

第二个例子就是 Burst Baloon了啊

但是说起来太久远了,具体可以看下这道题目在简书里我写的文章。
总是 dp recursion >>> dp iteration
因为 dp recursion + memorization 不能从根本上解决问题。

接着这道题目往下说。
所以,我们需要把状态和状态之间完全独立起来。
想斐波那契数列的iteration解法。
我求 f(n) 的时候不用再次计算 f(n - 1), f(n - 2),他们已经完全计算好了,完全独立的。

但是recursion + memorization 版本不是
f(n) needs f(n - 2), f(n - 1) 也需要 f(n - 2)
虽然有hit,但是仍然要再recursive call 一下

你认为差不多?
那你错了,看我画的图。
左边是 f(10) recursion + memorization 版本
右边是 f(10) iteration 版本

从图中我们可以看出,
左侧一共需要计算 2 * n + 1 个结点。
右侧一共需要计算 n + 1 个结点

似乎数量级是差不多的。
再仔细看。
左侧有 2 * n + 1个 stack
右侧,只有 1 个stack

无论 n 多么大,
iteration 永远只有一个 stack
而 recursion + memorization 无论cache policy 设计的再怎么好, stack的个数都会随着n变大而 剧烈 变大
而大量的栈操作,会有入栈出栈,不仅对空间上要影响,对时间影响也很大。

**
这才是为什么, recursion + memorization 看上去计算次数和 iteration差不多,但却慢那么多的,根本原因所在。
**

那么,如何面对dp类题目呢?
首先,就是什么时候用dp
当题目出现求 最大最小最长最短最优的时候,一定是用DP

然后,dp有多种思路,我记得的有,
1 . divide and conquer, 划成两块,分别继续
2 . string 类型的,通过前一个状态推导后一个。
3 . buy and sell stock 那种,状态机的

等等。
然后分析哪里存在重复计算,然后用memorization 剪枝

这是第二步,也是想出DP后
用memorization cut edge

第三步,就是思考,为什么需要重复计算
因为状态之间相互依靠的效果太明显,不能完全切开。
或者说,当前状态不仅依靠之前的一个状态,可能依靠之前的所有状态。
那么我们需要一种机制,把状态之间彻底切开。
比如,结点只可能被偷或者没被偷。
如果 rob(root) 被偷,
那么, left, right 只能没被偷,就不用在计算他们了
如果, root没被偷,那么 left, right可以被偷,也可以没被偷

写出了下面的解法:
My code:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public int rob(TreeNode root) {
        if (root == null) {
            return 0;
        }
        
        int[] ret = helper(root);
        return Math.max(ret[0], ret[1]);
    }
    
    private int[] helper(TreeNode root) {
        if (root == null) {
            return new int[]{0, 0};
        }
        int[] left = helper(root.left);
        int[] right = helper(root.right);
        
        int[] ret = new int[2];
        ret[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        ret[1] = root.val + left[0] + right[0];
        return ret;
    }
}

这个算法下,
root只会有 root.left and root.right 推导,
和下面的 孙子辈没关系了,不需要recursive call
而上面的算法,
root,
root.left, root.right

都需要 recursive call 一下这些孙子辈,虽然 cache hit也没有用,总有栈的消耗。当输入变大,尤其层数变多时,消耗是很惊人的。

当然,这里还是没写成 iteration的做法,否则更优。

Anyway, Good luck, Richardo! -- 09/09/2016

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容