ComputeColStats UDF中 近似算法的介绍

一,前面的话

表和列的统计信息对CBO的结果有着极大地影响,能够高效和准确的收集统计信息是极其重要的。但高效和准确是矛盾的,更准确的统计信息往往需要更多的计算,我们能做的是在高效和准确之间找到更好的平衡。接下来的内容是关于目前在ComputeColStats中用的一些近似算法。

二,收集的内容

目前针对列主要会收集以下统计信息:

cntRows : 列中总数据个数,包括nulll值

avgColLen :列的平均长度

maxColLEN :列的最大长度

minValue :列的最小值

maxValue :列的最大值

numNulls :列中null值个数

numFalses :如果boolean型,false值的个数

numTrues :如果boolean型,true值的个数

countDistinct :不同值的个数

topK :topk值的个数,数据倾斜的标志

一般说来除了countDistinct 和topK 以外的统计信息基本上消耗资源并不大(minValue和maxValue存在大量比较,也会消耗不少资源),问题主要集中在countDistinct 和topK上。下面要描述的近似算法也是主要针对这两个点。

三,countDistinct 实现

算法:Flajolet-Martin

论文见:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.3869&rep=rep1&type=pdf

简介

对于n个object,如果Hash结果中,结尾(或开头)连续0的长度的最大值是m,那么,可以估计唯一的object的数据量是2^m个。

假设有一个非常好的hash函数,能够将object哈希成一个二进制数0101……,并且非常均匀的打散到二进制空间。如果有8个唯一的object,将它们全部Hash之后,结果按照概率应该有4个object的Hash值以0结尾,这4个Hash值又应该有2个结尾是00,这2个中又有1个结尾是000。

采用多个独立的hash函数,每个hash函数分别计算最长0比特序列,然后求平均值,减少误差。

hash函数的个数基本上就决定了Flajolet-Martin算法的效率和准确度,后面有针对不同hash函数个数的测试结果。

四,topK实现

算法:Space-Saving

伪代码:

五,基本性能测试

结论:

1,Base Stats对性能也是存在影响的,主要是minValue和maxValue的计算,尤其是collen较长的情况下

2,一般说来distinct相对topK会更慢些,除非在collen较长的时候,topK也是基于比较来的

3,随着列个数的增加,收集stats消耗的时间也线性的增加

4,distinct的计算基于hash,而topK的计算基于比较,所以前者对collen并不敏感

六,不同hash函数个数执行效率的测试

结论:

基本上随着hash函数个数的增加线性的增长

七,不同hash函数个数准确性的测试

结论:

hash函数个数增加到32个后,准确率基本能满足需求

八,不同hash函数个数的测试总结

结论:选择32个hash函数计算distinct,平衡执行效率及准确性

九,sample算法的选择

1,必要性:

基于前面对执行效率的测试,为了避免对任务产生过大的影响,Sample是一定要做的

2,Sample算法的要求:

效率,随机

3,Sample的选择:

采用buildin的sample函数实现

前提是假设数据分布是随机的

4,Sample的影响:

对某些stats基本没影响,比如说avgColLen,maxColLen,minValue,maxValue

对某些stats有些影响,比如说cntRows, numNulls,numFalses,numTrues,topK

对countDistinct影响比较大,并且countDistinct也更加重要,需要特别注意

5,Sample后countDistinct的处理:

根据Sample的countDistinct预测完整数据的countDistinct,采样,拟合

基本思路如下图:

希望通过对sample内的数据进行采样,利用这些采样点描绘全部数据的形态,达到基本准确预测全部数据distinct的结果。这是个美好的愿望,在sample的数据相对较少的时候,总有些情况下sample下的形态跟完整数据的形态存在较大的差异,此时的误差会比较大。

十,不同sample比例执行效率的测试

采样比例在1/100后执行时间差距不大,此时最大的消耗在数据读取上,而不针对distinct的计算。

十一,不同sample比例准确性的测试

针对表meta.m_fuxi_instance表中的列project_name,odps_inst_id做了些测试,结果如上。看起来1/50的结果还是可以接受的。

多说一句,对于distinct来说,并不需要完全的正确,10倍以内的差距目前来说是可以接受的,这也是我们可以通过采样来提高效率的前提。

十二,按sample比例为1/25为例的计算结果

执行时间和准确率基本都可以满足现在需求

十三,后续的工作

对于准确率的提升是后续需要做的事情之一,这关键还是如何在sample里面找带更有代表性的点来预测全部数据的形态。但,要作好心理准备,对于某些场景来说,可能就找不到这样的方法,需要接受一定范围的误差。

原文链接

阅读更多干货好文,请关注扫描以下二维码:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容