Hadoop本质上是:分布式文件系统(HDFS) + 分布式计算框架(Mapreduce) + 调度系统Yarn搭建起来的分布式大数据处理框架。
Hive:是一个基于Hadoop的数据仓库,适用于一些高延迟性的应用(离线开发),可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能。Hive可以认为是MapReduce的一个包装,把好写的HQL转换为的MapReduce程序,本身不存储和计算数据,它完全依赖于HDFS和MapReduce,Hive中的表是纯逻辑表。hive需要用到hdfs存储文件,需要用到MapReduce计算框架。
HBase:是一个Hadoop的数据库,一个分布式、可扩展、大数据的存储。hbase是物理表,不是逻辑表,提供一个超大的内存hash表,搜索引擎通过它来存储索引,方便查询操作。HBase可以认为是HDFS的一个包装。他的本质是数据存储,是个NoSql数据库;HBase部署于HDFS之上,并且克服了hdfs在随机读写方面的缺点,提高查询效率。
对HBASE数据结构的简单说明:

假设HBASE表内容如上,一般将personal data 和 professional data称为column family,而name、city、designation和salary则称为各个column family下面的qualifier。每一个column family都可以认为是一个字典结构,其里面的qualifier则为key,如下:
{
"row1": {
"personal_data": {
"name": "raju",
"city": "hyderabad"
},
"professional_data": {
"designation": "manager",
"salary": 5000
}
},
"row2": {...}
}
其中,对于每一行,每个qualifier其实并不是必须存在的,可以缺失。除了上面的column family,qualifier之外,还有timestamp信息,即每个字段数据保留多久(TTL)。
参考:
https://www.zhihu.com/question/403840156/answer/1308998199
https://www.yiibai.com/hbase/hbase_create_data.html#article-start