消息队列的常见问题

一、为什么使用消息队列?

为什么使用?其实就是在实际业务中,有个具体的场景,如果不使用MQ,可能会有很多麻烦,用了MQ之后带给我们很多好处。场景其实有很多,常见的有三个:1.解耦、2.异步、3.削峰

1.解耦

A系统要发送一条数据到BCD三个系统,接口调用发送,如果新增个E系统,也需要这条数据呢?如果C系统现在不需要这条数据了呢?如果A系统又要发送第二种数据了呢?而且A系统要时刻关注BCD系统的状态,BCD挂了怎么办?要不要重发?要不要把数据存起来?

如果系统中存在类似情况,你可以考虑这个调用是不是必须要同步调用?如果用MQ来解耦,会省去很多麻烦。

2.异步

A系统接收一个请求,需要在ABCD四个数据库进行写库操作,A本地写库需要30ms,B库需要100ms,C库需要200ms,C库需要200ms,则一共需要30+100+200+200ms。如果用MQ来进行异步操作,则只需要30ms后即可返回,BCD异步写入即可,A不用考虑。

3.削峰

每天0~11点,A系统风平浪静,每秒并发100,12点时,并发暴增到10000,系统每秒只能处理1000个请求,怎么办?这时可以用MQ进行流量削峰。


二、消息队列的优缺点

优点已经说了,解耦,异步,削峰,接下来说消息队列的缺点:

1.系统可用性降低

本来只需要考虑系统本身可用性,现在引入了MQ,如果MQ挂了怎么办?

2.系统复杂性提高

MQ加进来了,消息丢失怎么办?重复投递怎么办?重复消费怎么办?消息的顺序性怎么保证?

3.一致性问题

A处理完返回成功了,调用者以为请求成功了,可是BC成功,D失败了怎么办,数据就不一致了。

所以,消息队列其实结构非常复杂,引入它会带来很多好处,但是同时需要规避很多问题。

三、应对MQ缺点的办法

1.消息丢失怎么办?(消息的可靠性传输)

消息的丢失可能会出现在三个地方:

(1)生产者弄丢数据

生产者将数据发送到RabbitMQ的时候,可能数据就在半路给搞丢了,因为网络啥的问题,都有可能。怎么解决?

①事务:生产者发送数据之前开启RabbitMQ事务(channel.txSelect),然后发送消息,如果消息没有成功被RabbitMQ接收到,那么生产者会收到异常报错,此时就可以回滚事务(channel.txRollback),然后重试发送消息;如果收到了消息,可以提交事务(channel.txCommit)。但是问题是,RabbitMQ事务机制一搞,基本上吞吐量会下来,因为太耗性能。

②confirm模式:在生产者那里设置开启confirm模式之后,你每次写的消息都会分配一个唯一的id,然后如果写入了RabbitMQ中,RabbitMQ会给你回传一个ack消息,告诉你说这个消息ok了。如果RabbitMQ没能处理这个消息,会回调你一个nack接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息id的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。

所以一般在生产者这块避免数据丢失,都是用confirm机制的。

(2)Mq弄丢数据

就是RabbitMQ自己弄丢了数据,这个你必须开启RabbitMQ的持久化,就是消息写入之后会持久化到磁盘,哪怕是RabbitMQ自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。

设置持久化有两个步骤:

①第一个是创建queue和交换器的时候将其设置为持久化,这样就可以保证RabbitMQ持久化相关的元数据,但是不会持久化queue里的数据;

②第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时RabbitMQ就会将消息持久化到磁盘上去

必须要同时设置这两个持久化才行

持久化可以和生产者的confirm结合,当持久化成功后,再ack生产者。如果持久化之前RabbitMQ挂了,生产者没收到ack,会重发。

(3)消费者弄丢数据

RabbitMQ如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,RabbitMQ认为你都消费了,这数据就丢了。

这个时候得用RabbitMQ提供的ack机制,简单来说,就是你关闭RabbitMQ自动ack,可以通过一个api来调用就行,然后每次你自己代码里确保处理完的时候,再程序里ack一把。这样的话,如果你还没处理完,不就没有ack?那RabbitMQ就认为你还没处理完,这个时候RabbitMQ会把这个消费分配给别的consumer去处理,消息是不会丢的。

2.消费者顺序消费

从根本上说,异步消息是不应该有顺序依赖的。在MQ上估计是没法解决。要实现严格的顺序消息,简单且可行的办法就是:保证生产者- MQServer -消费者是一对一对一的关系。

如果有顺序依赖的消息,要保证消息有一个hashKey,类似于数据库表分区的的分区key列。保证对同一个key的消息发送到相同的队列。A用户产生的消息(包括创建消息和删除消息)都按A的hashKey分发到同一个队列。只需要把强相关的两条消息基于相同的路由就行了,也就是说经过m1和m2的在路由表里的路由是一样的,那自然m1会优先于m2去投递。而且一个queue只对应一个consumer

3.消息的重复

分为两大类情况:1、生产者消息重复发送; 2.MQ向消费者投递时重复投递

终极解决办法:幂等性                                                                     

1. MVCC:

多版本并发控制,乐观锁的一种实现,在生产者发送消息时进行数据更新时需要带上数据的版本号,消费者去更新时需要去比较持有数据的版本号,版本号不一致的操作无法成功。例如博客点赞次数自动+1的接口:                                                                                        public boolean addCount(Long id, Long version);                                                          update blogTable set count= count+1,version=version+1 where id=321 and version=123

每一个version只有一次执行成功的机会,一旦失败了生产者必须重新获取数据的最新版本号再次发起更新。

2. 去重表:

利用数据库表单的特性来实现幂等,常用的一个思路是在表上构建唯一性索引,保证某一类数据一旦执行完毕,后续同样的请求不再重复处理了(利用一张日志表来记录已经处理成功的消息的ID,如果新到的消息ID已经在日志表中,那么就不再处理这条消息。)

以电商平台为例子,电商平台上的订单id就是最适合的token。当用户下单时,会经历多个环节,比如生成订单,减库存,减优惠券等等。每一个环节执行时都先检测一下该订单id是否已经执行过这一步骤,对未执行的请求,执行操作并缓存结果,而对已经执行过的id,则直接返回之前的执行结果,不做任何操作。这样可以在最大程度上避免操作的重复执行问题,缓存起来的执行结果也能用于事务的控制等。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容