Presto查询优化

我的CSDN: http://blog.csdn.net/FreeFishLy/article/details/79081764
Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。查询语言是类ANSI SQL语句。笔者在多个项目中用到Presto做即席查询,总结了一些优化措施。


一、数据存储

  1. 合理设置分区
    与Hive类似,Presto会根据元信息读取分区数据,合理的分区能减少Presto数据读取量,提升查询性能。
  2. 使用列式存储
    Presto对ORC文件读取做了特定优化,因此在Hive中创建Presto使用的表时,建议采用ORC格式存储。相对于Parquet,Presto对ORC支持更好。
  3. 使用压缩
    数据压缩可以减少节点间数据传输对IO带宽压力,对于即席查询需要快速解压,建议采用snappy压缩
  4. 预先排序
    对于已经排序的数据,在查询的数据过滤阶段,ORC格式支持跳过读取不必要的数据。比如对于经常需要过滤的字段可以预先排序。
INSERT INTO table nation_orc partition(p) SELECT * FROM nation SORT BY n_name;

如果需要过滤n_name字段,则性能将提升。

SELECT count(*) FROM nation_orc WHERE n_name=’AUSTRALIA’;

二、查询SQL优化

  1. 只选择使用必要的字段
    由于采用列式存储,选择需要的字段可加快字段的读取、减少数据量。避免采用*读取所有字段。
[GOOD]: SELECT time,user,host FROM tbl
[BAD]:  SELECT * FROM tbl
  1. 过滤条件必须加上分区字段
    对于有分区的表,where语句中优先使用分区字段进行过滤。acct_day是分区字段,visit_time是具体访问时间
[GOOD]: SELECT time,user,host FROM tbl where acct_day=20171101
[BAD]:  SELECT * FROM tbl where visit_time=20171101
  1. Group By语句优化
    合理安排Group by语句中字段顺序对性能有一定提升。将Group By语句中字段按照每个字段distinct数据多少进行降序排列。示例中uid是用户id,比性别数据大很多。
[GOOD]: SELECT GROUP BY uid, gender
[BAD]:  SELECT GROUP BY gender, uid
  1. Order by时使用Limit
    Order by需要扫描数据到单个worker节点进行排序,导致单个worker需要大量内存。如果是查询Top N或者Bottom N,使用limit可减少排序计算和内存压力。
[GOOD]: SELECT * FROM tbl ORDER BY time LIMIT 100
[BAD]:  SELECT * FROM tbl ORDER BY time

还有尽量将排序的字段减少些能加快计算。

  1. 使用近似聚合函数
    Presto有一些近似聚合函数,对于允许有少量误差的查询场景,使用这些函数对查询性能有大幅提升。比如使用approx_distinct() 函数比Count(distinct x)有大概2.3%的误差。
SELECT approx_distinct(user_id) FROM access

如果非要精确去重,请用Count+Group 语句代替

  1. 用regexp_like代替多个like语句
    Presto查询优化器没有对多个like语句进行优化,使用regexp_like对性能有较大提升
[GOOD]
SELECT
  ...
FROM
  access
WHERE
  regexp_like(method, 'GET|POST|PUT|DELETE')
  
[BAD]
SELECT
  ...
FROM
  access
WHERE
  method LIKE '%GET%' OR
  method LIKE '%POST%' OR
  method LIKE '%PUT%' OR
  method LIKE '%DELETE%'
  1. 使用Join语句时将大表放在左边
    Presto中join的默认算法是broadcast join,即将join左边的表分割到多个worker,然后将join右边的表数据整个复制一份发送到每个worker进行计算。如果右边的表数据量太大,则可能会报内存溢出错误。
[GOOD] SELECT ... FROM large_table l join small_table s on l.id = s.id
[BAD] SELECT ... FROM small_table s join large_table l on l.id = s.id

如果左表和右表都比较大怎么办?为了防止内存报错
1)修改配置distributed-joins-enabled (presto version >=0.196)
2)在每次查询开始使用distributed_join的session选项

-- set session distributed_join = 'true'
SELECT ... FROM large_table1 join large_table2
on large_table1.id = large_table2.id

核心点就是使用distributed join. Presto的这种配置类型会将左表和右表同时以join key的hash value为分区字段进行分区. 所以即使右表也是大表,也会被拆分.
缺点是会增加很多网络数据传输, 所以会比broadcast join的效率慢.

  1. 使用Rank函数代替row_number函数来获取Top N
    在进行一些分组排序场景时,使用rank函数性能更好
[GOOD]
SELECT checksum(rnk)
FROM (
  SELECT rank() OVER (PARTITION BY l_orderkey, l_partkey ORDER BY l_shipdate DESC) AS rnk
  FROM lineitem
) t
WHERE rnk = 1

[BAD]
SELECT checksum(rnk)
FROM (
  SELECT row_number() OVER (PARTITION BY l_orderkey, l_partkey ORDER BY l_shipdate DESC) AS rnk
  FROM lineitem
) t
WHERE rnk = 1

9.多用with语句
使用Presto分析统计数据时,可考虑把多次查询合并为一次查询,用Presto提供的子查询完成。
这点和我们熟知的MySQL的使用不是很一样。注意下列子查询中的逗号。

WITH subquery_1 AS (
    SELECT a1, a2, a3 
    FROM Table_1 
    WHERE a3 between 20180101 and 20180131
),              
subquery_2 AS (
    SELECT b1, b2, b3
    FROM Table_2
    WHERE b3 between 20180101 and 20180131
)               
SELECT 
    subquery_1.a1, subquery_1.a2, 
    subquery_2.b1, subquery_2.b2
FROM subquery_1
    JOIN subquery_2
    ON subquery_1.a3 = subquery_2.b3; 
  1. 尽量用UNION ALL代替UNION
    和distinct的原因类似, UNION有去重的功能, 所以会引发内存使用的问题.
    如果你只是拼接两个或者多个SQL查询的结果, 考虑用UNION ALL

三、无缝替换Hive表

如果之前的hive表没有用到ORC和snappy,那么怎么无缝替换而不影响线上的应用:
比如如下一个hive表:

CREATE TABLE bdc_dm.res_category(
channel_id1 int comment '1级渠道id',
province string COMMENT '省',
city string comment '市', 
uv int comment 'uv'
)
comment 'example'
partitioned by (landing_date int COMMENT '日期:yyyymmdd')
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' COLLECTION ITEMS TERMINATED BY ',' MAP KEYS TERMINATED BY ':' LINES TERMINATED BY '\n';

建立对应的orc表

CREATE TABLE bdc_dm.res_category_orc(
channel_id1 int comment '1级渠道id',
province string COMMENT '省',
city string comment '市', 
uv int comment 'uv'
)
comment 'example'
partitioned by (landing_date int COMMENT '日期:yyyymmdd')
row format delimited fields terminated by '\t'
stored as orc 
TBLPROPERTIES ("orc.compress"="SNAPPY");

先将数据灌入orc表,然后更换表名

insert overwrite table bdc_dm.res_category_orc partition(landing_date)
select * from bdc_dm.res_category where landing_date >= 20171001;

ALTER TABLE bdc_dm.res_category RENAME TO bdc_dm.res_category_tmp;
ALTER TABLE bdc_dm.res_category_orc RENAME TO bdc_dm.res_category;

其中res_category_tmp是一个备份表,若线上运行一段时间后没有出现问题,则可以删除该表。

四、注意事项

  1. ORC和Parquet都支持列式存储,但是ORC对Presto支持更好(Parquet对Impala支持更好)
  2. 对于列式存储而言,存储文件为二进制的,对于经常增删字段的表,建议不要使用列式存储(修改文件元数据代价大)。对比数据仓库,dwd层建议不要使用ORC,而dm层则建议使用

若在使用Presto和Hive过程中有任何问题,欢迎给我留言!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351