一、利用Metal实现渲染图形
加载一个由N个三角形组成的双色四边形
加载流程
- 在VC中创建渲染Renderer,苹果提倡渲染代码和C分离,减少C中关于渲染逻辑的编写。
// ViewController
- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view.
MTKView * mtkView = (MTKView *)self.view;
mtkView.device = MTLCreateSystemDefaultDevice();
if (!mtkView.device) {
NSLog(@"该设备不支持 Metal");
return;
}
self.render = [[Renderer alloc] initWithMetalKitView:mtkView];
if (!self.render) {
NSLog(@"render create failed");
return;
}
mtkView.delegate = self.render;
[self.render mtkView:mtkView drawableSizeWillChange:mtkView.drawableSize];
}
- 创建Renderer
1.先重写初始化函数;2.生成顶点数据;3.加载渲染器;4.实现代理
- (instancetype)initWithMetalKitView:(nonnull MTKView *)mtkView
{
self = [super init];
if (self) {
_device = mtkView.device;
[self loadMetalShaderWith:mtkView];
}
return self;
}
- (void)loadMetalShaderWith:(MTKView *)mtkView
{
// 1.设置绘制纹理的像素格式
mtkView.colorPixelFormat = MTLPixelFormatBGRA8Unorm_sRGB;
// 2.从项目中加载着色器文件
id<MTLLibrary> defLibary = [_device newDefaultLibrary];
// 从库中加载顶点函数
id<MTLFunction> vertexFunction = [defLibary newFunctionWithName:@"vertexShader"];
id<MTLFunction> fragmentFunction = [defLibary newFunctionWithName:@"fragmentShader"];
// 3.配置管道
MTLRenderPipelineDescriptor * pipelineStateDescriptor = [[MTLRenderPipelineDescriptor alloc] init];
//
pipelineStateDescriptor.label = @"This is pipeline";
// 可编程函数-处理渲染过程的顶点
pipelineStateDescriptor.vertexFunction = vertexFunction;
// 处理渲染过程的片元
pipelineStateDescriptor.fragmentFunction = fragmentFunction;
// 设置管道中存储颜色数据的格式
pipelineStateDescriptor.colorAttachments[0].pixelFormat = mtkView.colorPixelFormat;
// 4.同步创建并返回渲染管道对象
NSError * err = nil;
_pipelineState = [_device newRenderPipelineStateWithDescriptor:pipelineStateDescriptor error:&err];
// 判断是否创建成功
if (_pipelineState == nil) {
NSLog(@"创建渲染管道失败:%@",err);
}
// 获取顶点数据
NSData * vertexData = [self createVertexData];
// 创建vertex buffer 交由GPU读取
_vertexBuffer = [_device newBufferWithLength:vertexData.length options:MTLResourceStorageModeShared];
/*
memcpy(void *dst, const void *src, size_t n);
dst:目的地
src:源内容
n: 长度
*/
memcpy(_vertexBuffer.contents, vertexData.bytes, vertexData.length);
//计算顶点个数 = 顶点数据长度 / 单个顶点大小
_numVertices = vertexData.length / sizeof(MetalVertex);
// 6.创建命令队列
_commandQueue = [_device newCommandQueue];
}
///创建顶点数据
- (nonnull NSData *)createVertexData
{
//1.正方形 = 三角形+三角形
const MetalVertex quadVertices[] =
{
// Pixel 位置, RGBA 颜色
{ { -20, 20 }, { 1, 0, 0, 1 } },
{ { 20, 20 }, { 1, 0, 0, 1 } },
{ { -20, -20 }, { 1, 0, 0, 1 } },
{ { 20, -20 }, { 0, 0, 1, 1 } },
{ { -20, -20 }, { 0, 0, 1, 1 } },
{ { 20, 20 }, { 0, 0, 1, 1 } },
};
//行/列 数量
const NSUInteger NUM_COLUMNS = 25;
const NSUInteger NUM_ROWS = 15;
//顶点个数
const NSUInteger NUM_VERTICES_PER_QUAD = sizeof(quadVertices) / sizeof(MetalVertex);
//四边形间距
const float QUAD_SPACING = 50.0;
//数据大小 = 单个四边形大小 * 行 * 列
NSUInteger dataSize = sizeof(quadVertices) * NUM_COLUMNS * NUM_ROWS;
//2. 开辟空间
NSMutableData *vertexData = [[NSMutableData alloc] initWithLength:dataSize];
//当前四边形
MetalVertex * currentQuad = vertexData.mutableBytes;
//3.获取顶点坐标(循环计算)
//行
for(NSUInteger row = 0; row < NUM_ROWS; row++)
{
//列
for(NSUInteger column = 0; column < NUM_COLUMNS; column++)
{
//A.左上角的位置
vector_float2 upperLeftPosition;
//B.计算X,Y 位置.注意坐标系基于2D笛卡尔坐标系,中心点(0,0),所以会出现负数位置
upperLeftPosition.x = ((-((float)NUM_COLUMNS) / 2.0) + column) * QUAD_SPACING + QUAD_SPACING/2.0;
upperLeftPosition.y = ((-((float)NUM_ROWS) / 2.0) + row) * QUAD_SPACING + QUAD_SPACING/2.0;
//C.将quadVertices数据复制到currentQuad
memcpy(currentQuad, &quadVertices, sizeof(quadVertices));
//D.遍历currentQuad中的数据
for (NSUInteger vertexInQuad = 0; vertexInQuad < NUM_VERTICES_PER_QUAD; vertexInQuad++)
{
//修改vertexInQuad中的position
currentQuad[vertexInQuad].position += upperLeftPosition;
}
//E.更新索引
currentQuad += 6;
}
}
return vertexData;
}
#pragma mark - MTKViewDelegate
- (void)drawInMTKView:(nonnull MTKView *)view {
// 1,为当前渲染的每个渲染传递创建一个新的命令缓存区
id<MTLCommandBuffer> commandBuffer = [_commandQueue commandBuffer];
commandBuffer.label = @"My Command";
// 2.MTLRenderPassDescriptor:一组渲染目标,用作渲染通道生成的像素的输出目标。
MTLRenderPassDescriptor * renderPassDescriptor = view.currentRenderPassDescriptor;
// 判断渲染目标是否为空
if (renderPassDescriptor != nil) {
// 3.创建渲染命令编码器,这样我们就可以渲染
id<MTLRenderCommandEncoder> renderEncoder = [commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor];
renderEncoder.label = @"My Render Encoder";
/**
* 4.设置绘制区域
* typedef struct {
* double originX, originY, width, height, znear, zfar;
* } MTLViewport;
*/
[renderEncoder setViewport:(MTLViewport){0.0, 0.0, _viewportSize.x, _viewportSize.y, -1.0, 1.0}];
// 5.设置渲染管道
[renderEncoder setRenderPipelineState:_pipelineState];
/**
* 6.发送数据到顶点着色器函数
* buffer:包含需要传递的缓冲对象
* offset:从缓冲器的开头字节偏移,指示“顶点指针”指向什么。在这种情况下,我们通过0,所以数据一开始就被传递下来.偏移量
* index:一个整数索引,对应于我们的“vertexShader”函数中的缓冲区属性限定符的索引。注意,此参数与 -[MTLRenderCommandEncoder setVertexBytes:length:atIndex:] “索引”参数相同。
*/
[renderEncoder setVertexBuffer:_vertexBuffer offset:0 atIndex:VertexInputIndexVertices];
// 将 viewportSize 设置到顶点缓存区绑定点设置数据
[renderEncoder setVertexBytes:&_viewportSize length:sizeof(_viewportSize) atIndex:VertexInputIndexViewportSize];
/**
* 7.开始绘图
* @brief 在不使用索引列表的情况下,绘制图元
* @param 绘制图形组装的基元类型
* @param 从哪个位置数据开始绘制,一般为0
* @param 每个图元的顶点个数,绘制的图型顶点数量
*/
/* (MTLPrimitiveType)
MTLPrimitiveTypePoint = 0, 点
MTLPrimitiveTypeLine = 1, 线段
MTLPrimitiveTypeLineStrip = 2, 线环
MTLPrimitiveTypeTriangle = 3, 三角形
MTLPrimitiveTypeTriangleStrip = 4, 三角型扇
*/
[renderEncoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:_numVertices];
//8.完成编码器命令的生成,结束编码;并从MTLCommandBuffer中分离
[renderEncoder endEncoding];
// 9.推出绘制
[commandBuffer presentDrawable:view.currentDrawable];
}
// 10.完成渲染并将命令推送到GPU
[commandBuffer commit];
}
- (void)mtkView:(nonnull MTKView *)view drawableSizeWillChange:(CGSize)size {
// 保存可绘制的大小
_viewportSize.x = size.width;
_viewportSize.y = size.height;
}
其中 [renderEncoder setVertexBuffer:_vertexBuffer offset:0 atIndex:VertexInputIndexVertices];
,使用该函数发送数据到顶点数据的原因是本实例中顶点数量过大; 当字节数小于4096
时则可使用[renderEncoder setVertexBytes: length: atIndex:]
PS:一个顶点字节数为32字节,X、Y、Z、W 各站8位