- 基于hadoop2.7.x系列
- MapReduce执行过程中分为两个阶段,Mapper和Reducer阶段
MapReduce执行过程简述
MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,执行过程如下图:
MapReduce大致执行流程.jpg
Mapper阶段任务执行过程详解
每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出,整个Mapper任务的处理过程又可以分为以下几个阶段,如图所示:
mapreduce阶段划分
- (1)Read阶段:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。
- (2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
- (3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
- (4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
- 溢写阶段详情:
- 步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
- 步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
- 步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。
- 溢写阶段详情:
- (5)Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。
在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并io.sort.factor(默认100)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。
Reducer阶段任务执行过程详解
Reducer阶段执行流程.png
ReducerTask阶段大致分为copy、sort、reduce三个阶段重点在前两个阶段:
1.copy阶段:调用eventFetcher来获取已完成的map列表,由Fetcher线程去copy数据;在此过程中会启动两个merge线程,分别为inMemoryMerger和onDiskMerger,分别将内存中的数据merge到磁盘和将磁盘中的数据进行merge。待数据copy完成之后,copy阶段就完成了,总结来说就是简单地拉取数据。Reduce进程启动一些数据copy线程(Fetcher),通过HTTP方式请求maptask获取属于自己的文件。
2.sort阶段:把复制到reducer'端的数据全部进行合并,排序。主要是执行finalMerge操作,Copy过来的数据会先放入内存缓冲区,当内存中的数据量达到一定阈值,就启动内存到磁盘的merge。这个过程如果设置的有combiner,会启动combiner进行聚合操作。
3.reduce阶段:对排序后的键值对调用用户定义的reduce函数进行处理,键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对,最后把这些输出的键值对写入到HDFS文件中。
Reducer阶段执行流程顺序:Copy阶段-->>Sort阶段-->>Reducer阶段
MapReduce执行流程图
MapReducer执行流程.png
Attention Please--文章来自互联网资料整理,如有雷同,纯属李小李抄袭,如有侵权请联系删除 From 李小李