Arduino 配置
/*
* nRF24L01_RX.ino
*
*
* ====== Pin Connection ======
*
* --------------------------
* GND - GND ■■ VCC - 3V3 |
* D9 - CE ■■ CSN - D10 |
* D13 - SLCK ■■ MOSI - D11 |
* D12 - MISO ■■ IRQ - NC |
* --------------------------
*
* ============================
*/
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
RF24 radio(9, 10); // CE, CSN
const uint8_t ADDR[6] = {1, 0, 0, 0, 0};
const uint8_t BUFFER_SIZE = 32;
uint8_t buffer[BUFFER_SIZE];
void setup() {
Serial.begin(115200);
radio.begin(); // Starting the Wireless communication
radio.openReadingPipe(1, ADDR); // Setting the address at which we will receive the data
// channel should not be 0
radio.setPALevel(RF24_PA_MIN); // You can set this as minimum or maximum depending on the distance between the transmitter and receiver.
radio.setChannel(87);
radio.setDataRate(RF24_1MBPS);
radio.setCRCLength(RF24_CRC_16);
radio.enableDynamicPayloads();
radio.setAutoAck(1);
radio.startListening(); // This sets the module as receiver
Serial.println("Start listening...");
}
void loop() {
if (radio.available() > 0) {
radio.read(&buffer, sizeof(buffer)); //Reading the data
Serial.print("Received: ");
Serial.println((char *)buffer);
}
}
/*
* nRF24L01_TX.ino
*
*
* ====== Pin Connection ======
*
* --------------------------
* GND - GND ■■ VCC - 3V3 |
* D9 - CE ■■ CSN - D10 |
* D13 - SLCK ■■ MOSI - D11 |
* D12 - MISO ■■ IRQ - NC |
* --------------------------
*
* ============================
*/
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
RF24 radio(9, 10); // CE, CSN
const uint8_t ADDR[6] = {1, 0, 0, 0, 0};
const uint8_t BUFFER_SIZE = 32;
uint8_t buffer[BUFFER_SIZE] = "hello world";
void setup() {
Serial.begin(115200);
radio.begin(); // Starting the Wireless communication
radio.openWritingPipe(ADDR); // Setting the address where we will send the data
radio.setPALevel(RF24_PA_MIN); // You can set this as minimum or maximum depending on the distance between the transmitter and receiver.
radio.setChannel(87);
radio.setDataRate(RF24_1MBPS);
radio.setCRCLength(RF24_CRC_16);
radio.enableDynamicPayloads();
radio.setAutoAck(1);
radio.stopListening(); // This sets the module as transmitter
Serial.println("Start sending...");
}
void loop() {
radio.write(&buffer, sizeof(buffer));
Serial.println("message sent");
delay(500);
}
STM32 配置
PA2 对应 CSN chip select
PA3 对应 CE chip enable
需要下载 MY_NRF24.h
,在 这里
接收信号:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/**
* | nRF24l01 Pin connection |
* | ----------------------- |
* | PA2 | CS chip select |
* | PA3 | CE chip enable |
* | PA5 | SLCK |
* | PA6 | MISO |
* | PA7 | MOSI |
* | ----------------------- |
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "MY_NRF24.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
const uint64_t ADDR = 0x0000000001;
char myRxData[50];
char buffer[32] = "Ack by STMF7!";
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
NRF24_begin(GPIOA, GPIO_PIN_2, GPIO_PIN_3, hspi1);
nrf24_DebugUART_Init(huart1);
printRadioSettings();
NRF24_openReadingPipe(1, ADDR);
NRF24_setPayloadSize(32);
NRF24_setPALevel(RF_PWR_LOW);
NRF24_setChannel(87);
NRF24_setDataRate(RF24_1MBPS);
NRF24_setCRCLength(RF24_CRC_16);
NRF24_enableDynamicPayloads();
NRF24_enableAckPayload();
NRF24_setAutoAck(1);
NRF24_startListening();
HAL_Delay(100);
printRadioSettings();
while (1) {
if (NRF24_available() > 0) {
HAL_UART_Transmit(&huart1, (uint8_t *)"available ", sizeof("available "), 10);
NRF24_read(myRxData, 3);
NRF24_writeAckPayload(1, buffer, 32);
myRxData[3] = '\n';
HAL_UART_Transmit(&huart1, (uint8_t *)myRxData, 4, 10);
}
}
NRF24_setAutoAck(1);
//NRF24_setChannel(52);
//NRF24_setPayloadSize(3);
NRF24_openReadingPipe(1, ADDR);
//NRF24_enableDynamicPayloads();
NRF24_enableAckPayload();
printRadioSettings();
NRF24_startListening();
HAL_UART_Transmit(&huart1, (uint8_t *)"ready\n", sizeof("ready\n"), 10);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
if (NRF24_available()) {
HAL_UART_Transmit(&huart1, (uint8_t *)"available ", sizeof("available "), 10);
NRF24_read(myRxData, 3);
NRF24_writeAckPayload(1, buffer, 32);
myRxData[3] = '\n';
HAL_UART_Transmit(&huart1, (uint8_t *)myRxData, 4, 10);
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2|GPIO_PIN_3, GPIO_PIN_RESET);
/*Configure GPIO pins : PA2 PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/