2018-04-06

TensorFlow中的自动梯度
首先优化函数的定义就是前面一部分opt
=tf.train.GradientDescentOptimizer(learning_rate),定义好优化函数之后,可以通过grads_and_vars = opt.compute_gradients(loss, <list of variables>)来计算loss对于一个变量列表里面每一个变量的梯度,得到的grads_and_vars是一个list of tuples,list中的每个tuple都是由(gradient, variable)构成的,我们可以通过get_grads_and_vars = [(gv[0], gv[1]) for gv in grads_and_vars]将其分别取出来,然后通过opt.apply_gradients(get_grads_and_vars)来更新里面的参数,下面我们举一个小例子。

import tensorflow as tf

x = tf.Variable(5, dtype=tf.float32)
y = tf.Variable(3, dtype=tf.float32)

z = x**2 + x * y + 3

sess = tf.Session()
# initialize variable
sess.run(tf.global_variables_initializer())

# define optimizer
optimizer = tf.train.GradientDescentOptimizer(0.1)

# compute gradient z w.r.t x and y
grads_and_vars = optimizer.compute_gradients(z, [x, y])

# fetch the variable
get_grads_and_vars = [(gv[0], gv[1]) for gv in grads_and_vars]


# dz/dx = 2*x + y= 13
# dz/dy = x = 5
print('grads and variables')
print('x: grad {}, value {}'.format(
sess.run(get_grads_and_vars[0][0]), sess.run(get_grads_and_vars[0][1])))

print('y: grad {}, value {}'.format(
sess.run(get_grads_and_vars[1][0]), sess.run(get_grads_and_vars[1][1])))

print('Before optimization')
print('x: {}, y: {}'.format(sess.run(x), sess.run(y)))

# optimize parameters
opt = optimizer.apply_gradients(get_grads_and_vars)
# x = x - 0.1 * dz/dx = 5 - 0.1 * 13 = 3.7
# y = y - 0.1 * dz/dy = 3 - 0.1 * 5 = 2.5
print('After optimization using learning rate 0.1')
sess.run(opt)
print('x: {:.3f}, y: {:.3f}'.format(sess.run(x), sess.run(y)))
sess.close()
image.png

在实际中,我们当然不用手动更新参数,optimizer类可以帮我们自动更新,另外还有一个函数也能够计算梯度。

 tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None)

这个函数会返回list,list的长度就是xs的长度,list中每个元素都是
image.png

实际运用: 这个方法对于只训练部分网络非常有用,我们能够使用上面的函数只对网络中一部分参数求梯度,然后对他们进行梯度的更新。

链接:https://zhuanlan.zhihu.com/p/28924642

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容