语音编码常见概念解释--摘选自speex codec文档

原文地址:http://www.speex.org/docs/manual/speex-manual/node4.html

Codec description
This section describes Speex and its features into more details.

Concepts
Before introducing all the Speex features, here are some concepts in speech coding that help better understand the rest of the manual. Although some are general concepts in speech/audio processing, others are specific to Speex.

Sampling rate

The sampling rate expressed in Hertz (Hz) is the number of samples taken from a signal per second. For a sampling rate of
$ F_{s}$
$ F_{s}$
kHz, the highest frequency that can be represented is equal to
$ F_{s}/2$
$ F_{s}/2$

kHz (
$ F_{s}/2$
$ F_{s}/2$
is known as the Nyquist frequency). This is a fundamental property in signal processing and is described by the sampling theorem. Speex is mainly designed for three different sampling rates: 8 kHz, 16 kHz, and 32 kHz. These are respectively refered to as narrowband, wideband and ultra-wideband.

Bit-rate
When encoding a speech signal, the bit-rate is defined as the number of bits per unit of time required to encode the speech. It is measured in bits per second (bps), or generally kilobits per second. It is important to make the distinction between kilobits per second (kbps) and kilobytes per second (kBps).

Quality (variable)
Speex is a lossy codec, which means that it achives compression at the expense of fidelity of the input speech signal. Unlike some other speech codecs, it is possible to control the tradeoff made between quality and bit-rate. The Speex encoding process is controlled most of the time by a quality parameter that ranges from 0 to 10. In constant bit-rate (CBR) operation, the quality parameter is an integer, while for variable bit-rate (VBR), the parameter is a float.

Complexity (variable)
With Speex, it is possible to vary the complexity allowed for the encoder. This is done by controlling how the search is performed with an integer ranging from 1 to 10 in a way that's similar to the -1 to -9 options to gzip and bzip2 compression utilities. For normal use, the noise level at complexity 1 is between 1 and 2 dB higher than at complexity 10, but the CPU requirements for complexity 10 is about 5 times higher than for complexity 1. In practice, the best trade-off is between complexity 2 and 4, though higher settings are often useful when encoding non-speech sounds like DTMF tones.

Variable Bit-Rate (VBR)
Variable bit-rate (VBR) allows a codec to change its bit-rate dynamically to adapt to the ``difficulty'' of the audio being encoded. In the example of Speex, sounds like vowels and high-energy transients require a higher bit-rate to achieve good quality, while fricatives (e.g. s,f sounds) can be coded adequately with less bits. For this reason, VBR can achive lower bit-rate for the same quality, or a better quality for a certain bit-rate. Despite its advantages, VBR has two main drawbacks: first, by only specifying quality, there's no guaranty about the final average bit-rate. Second, for some real-time applications like voice over IP (VoIP), what counts is the maximum bit-rate, which must be low enough for the communication channel.

Average Bit-Rate (ABR)
Average bit-rate solves one of the problems of VBR, as it dynamically adjusts VBR quality in order to meet a specific target bit-rate. Because the quality/bit-rate is adjusted in real-time (open-loop), the global quality will be slightly lower than that obtained by encoding in VBR with exactly the right quality setting to meet the target average bit-rate.

Voice Activity Detection (VAD)
When enabled, voice activity detection detects whether the audio being encoded is speech or silence/background noise. VAD is always implicitly activated when encoding in VBR, so the option is only useful in non-VBR operation. In this case, Speex detects non-speech periods and encode them with just enough bits to reproduce the background noise. This is called ``comfort noise generation'' (CNG).

Discontinuous Transmission (DTX)
Discontinuous transmission is an addition to VAD/VBR operation, that allows to stop transmitting completely when the background noise is stationary. In file-based operation, since we cannot just stop writing to the file, only 5 bits are used for such frames (corresponding to 250 bps).

Perceptual enhancement
Perceptual enhancement is a part of the decoder which, when turned on, attempts to reduce the perception of the noise/distortion produced by the encoding/decoding process. In most cases, perceptual enhancement brings the sound further from the original objectively (e.g. considering only SNR), but in the end it still sounds better (subjective improvement).

Latency and algorithmic delay
Every speech codec introduces a delay in the transmission. For Speex, this delay is equal to the frame size, plus some amount of ``look-ahead'' required to process each frame. In narrowband operation (8 kHz), the delay is 30 ms, while for wideband (16 kHz), the delay is 34 ms. These values don't account for the CPU time it takes to encode or decode the frames.

Codec
The main characteristics of Speex can be summarized as follows:

Free software/open-source, patent and royalty-free
Integration of narrowband and wideband using an embedded bit-stream
Wide range of bit-rates available (from 2.15 kbps to 44 kbps)
Dynamic bit-rate switching (AMR) and Variable Bit-Rate (VBR) operation
Voice Activity Detection (VAD, integrated with VBR) and discontinuous transmission (DTX)
Variable complexity
Embedded wideband structure (scalable sampling rate)
Ultra-wideband mode at 32 kHz
Intensity stereo encoding option
Fixed-point implementation

Preprocessor
This part refers to the preprocessor module introduced in the 1.1.x branch. The preprocessor is designed to be used on the audio before running the encoder. The preprocessor provides three main functionalities:

noise suppression
automatic gain control (AGC)
voice activity detection (VAD)

The denoiser can be used to reduce the amount of background noise present in the input signal. This provides higher quality speech whether or not the denoised signal is encoded with Speex (or at all). However, when using the denoised signal with the codec, there is an additional benefit. Speech codecs in general (Speex included) tend to perform poorly on noisy input, which tends to amplify the noise. The denoiser greatly reduces this effect.Automatic gain control (AGC) is a feature that deals with the fact that the recording volume may vary by a large amount between different setups. The AGC provides a way to adjust a signal to a reference volume. This is useful for voice over IP because it removes the need for manual adjustment of the microphone gain. A secondary advantage is that by setting the microphone gain to a conservative (low) level, it is easier to avoid clipping.
The voice activity detector (VAD) provided by the preprocessor is more advanced than the one directly provided in the codec.

Adaptive Jitter Buffer
When transmitting voice (or any content for that matter) over UDP or RTP, packet may be lost, arrive with different delay, or even out of order. The purpose of a jitter buffer is to reorder packets and buffer them long enough (but no longer than necessary) so they can be sent to be decoded.

Acoustic Echo Canceller

In any hands-free communication system (Fig.
[*]
[*]
), speech from the remote end is played in the local loudspeaker, propagates in the room and is captured by the microphone. If the audio captured from the microphone is sent directly to the remote end, then the remove user hears an echo of his voice. An acoustic echo canceller is designed to remove the acoustic echo before it is sent to the remote end. It is important to understand that the echo canceller is meant to improve the quality on the remote end.

Figure: Acoustic echo model

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容