多卡训练的数据并行

最近在做多卡的实验,当然是使用最新的TensorFlow dataset API。在思考如何使每个卡取不同的数据,同时尽可能的提速,在论坛搜索了一下,思考有如下三种思路:

1、使用Dataset.batch()构造大batch的dataset,如4卡每卡batch size=6,那么就batch(24) 。然后在Iterator.get_next()之后tf.split(..., self.num_gpus),让每卡分到不同的batch。这应该是最简单的思路,不过split应该会降低速度。

2、用Dataset.batch()构造小batch的dataset,如每卡batch size=6,那么batch(6),然后在每卡上Iterator.get_next()。需要区分的是,如果Iterator.get_next()放在for i in range(num_gpus)之前,那么每卡读的batch应该是一样的。因此这种方法是指Iterator.get_next()放在循环里面。

3、创建多个iterator,每个GPU一个。在pipeline中使用dataset.Shard()对数据进行分片,请注意,此方法将消耗主机上的更多资源,因此可能需要减少buffer sizes 和degrees of parallelism。样例如下:

def input_fn(tfrecords_dirpath, num_gpus, batch_size,

            num_epochs, gpu_device, gpu_index):

    tfrecord_filepaths = tf.data.Dataset.list_files('{}/*.tfrecord'.format(tfrecords_dirpath))

    dataset = tf.data.TFRecordDataset(tfrecord_filepaths, num_parallel_reads= int(64 / num_gpus))

    dataset = dataset.shard(num_gpus, gpu_index)

    # use fused operations (shuffle_and_repeat, map_and_batch)

    dataset = dataset.apply(tf.contrib.data.shuffle_and_repeat(10000, num_epochs))

    dataset = dataset.apply(tf.contrib.data.map_and_batch(lambda x: parse_record(x), batch_size))

    # stage batches for processing by loading them pre-emptively on the GPU

    dataset = dataset.apply(tf.contrib.data.prefetch_to_device(gpu_device))

    iterator = dataset.make_one_shot_iterator()

    images_batch, labels_batch = iterator.get_next()

    return images_batch, labels_batch        

# create a separate inference graph in every GPU

gpu_devices = ['/gpu:{}'.format(i) for i in range(num_gpus)]

with tf.variable_scope(tf.get_variable_scope()):

    for i, gpu_device in enumerate(gpu_devices):

        # create a dataset and iterator per GPU

        image_batch, label_batch = input_fn(tfrecords_dirpath, num_gpus, batch_size_per_tower,

                                            num_epochs, gpu_device, i)

        with tf.device(gpu_device):

            with tf.name_scope('{}_{}'.format('tower', i)) as scope:

                # run inference and compute tower losses

                ...

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容