python机器学习-建立随机森林预测模型并特征分析(完整代码+实现效果)

实现功能:

python机器学习-建立随机森林预测模型并特征分析。

实现效果:

# 导入需要的库

from warnings import simplefilter

simplefilter(action='ignore', category=FutureWarning)

import pandas as pd

from sklearn.model_selection import train_test_split

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn import metrics

from sklearn.metrics import roc_curve, auc

import numpy as np

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier

# =============读取数据===========

def Read_data(file):

    dt = pd.read_csv(file)

    dt.columns = ['age', 'sex', 'chest_pain_type', 'resting_blood_pressure', 'cholesterol','fasting_blood_sugar', 'rest_ecg', 'max_heart_rate_achieved','exercise_induced_angina','st_depression', 'st_slope', 'num_major_vessels', 'thalassemia', 'target']

    data =dt

    return data

# ===========数据清洗==============

def data_clean(data):

    # 重复值处理

    print('存在' if any(data.duplicated()) else '不存在', '重复观测值')

    data.drop_duplicates()

    # 缺失值处理

    print('不存在' if any(data.isnull()) else '存在', '缺失值')

    data.dropna()  # 直接删除记录

    data.fillna(method='ffill')  # 前向填充

    data.fillna(method='bfill')  # 后向填充

    data.fillna(value=2)  # 值填充

    data.fillna(value={'resting_blood_pressure': data['resting_blood_pressure'].mean()})  # 统计值填充

    # 异常值处理

    data1 = data['resting_blood_pressure']

    # 标准差监测

    xmean = data1.mean()

    xstd = data1.std()

    print('存在' if any(data1 > xmean + 2 * xstd) else '不存在', '上限异常值')

    print('存在' if any(data1 < xmean - 2 * xstd) else '不存在', '下限异常值')

    # 箱线图监测

    q1 = data1.quantile(0.25)

    q3 = data1.quantile(0.75)

    up = q3 + 1.5 * (q3 - q1)

    dw = q1 - 1.5 * (q3 - q1)

    print('存在' if any(data1 > up) else '不存在', '上限异常值')

    print('存在' if any(data1 < dw) else '不存在', '下限异常值')

    data1[data1 > up] = data1[data1 < up].max()

    data1[data1 < dw] = data1[data1 > dw].min()

    return data

#==============数据编码=============

def data_encoding(data):

    data = data[["age", 'sex', "chest_pain_type", "resting_blood_pressure", "cholesterol","fasting_blood_sugar", "rest_ecg","max_heart_rate_achieved", "exercise_induced_angina","st_depression", "st_slope", "num_major_vessels","thalassemia","target"]]

    Discretefeature=['sex',"chest_pain_type", "fasting_blood_sugar", "rest_ecg","exercise_induced_angina",  "st_slope", "thalassemia"]

    Continuousfeature=["age", "resting_blood_pressure", "cholesterol","max_heart_rate_achieved","st_depression","num_major_vessels"]

    df = pd.get_dummies(data,columns=Discretefeature)

    df[Continuousfeature]=(df[Continuousfeature]-df[Continuousfeature].mean())/(df[Continuousfeature].std())

    df["target"]=data[["target"]]

    return df

#=============数据集划分==============

def data_partition(data):

    # 1.4查看样本是否平衡

    print(data["target"].value_counts())

    # X提取变量特征;Y提取目标变量

    X = data.drop('target', axis=1)

    y = data['target']

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2,random_state=10)

    feature=list(X.columns)

    return X_train, y_train, X_test, y_test,feature

#===========绘制ROC曲线================

def Draw_ROC(list1,list2):

    fpr_model,tpr_model,thresholds=roc_curve(list1,list2,pos_label=1)

    roc_auc_model=auc(fpr_model,tpr_model)

    font = {'family': 'Times New Roman','size': 12,}

    sns.set(font_scale=1.2)

    plt.rc('font',family='Times New Roman')

    plt.plot(fpr_model,tpr_model,'blue',label='AUC = %0.2f'% roc_auc_model)

    plt.legend(loc='lower right',fontsize = 12)

    plt.plot([0,1],[0,1],'r--')

    plt.ylabel('True Positive Rate',fontsize = 14)

    plt.xlabel('Flase Positive Rate',fontsize = 14)

    plt.show()

    return

#==============随机森林=================

def RF(X_train, y_train, X_test, y_test,feature):

    rf1 = RandomForestClassifier(max_depth=5, n_estimators=100, random_state=0)

    rf1.fit(X_train, y_train)

    print("\nFinally results of RF fitting:")

    print("Accuracy on training set: {:.3f}".format(rf1.score(X_train, y_train)))

    print("Accuracy on test set: {:.3f}".format(rf1.score(X_test, y_test)))

    print("Feature importance:\n{}".format(rf1.feature_importances_))

    predict_target=rf1.predict(X_test)

    predict_target_prob=rf1.predict_proba(X_test)  # 输出分类概率

    predict_target_prob_rf=predict_target_prob[:,1]

    df = pd.DataFrame({'prob':predict_target_prob_rf,'target':predict_target,'labels':list(y_test)})

    print('预测正确的数量:')

    print(sum(predict_target==y_test))

    print('RF测试集:')

    print(metrics.classification_report(y_test,predict_target))

    print(metrics.confusion_matrix(y_test, predict_target))

    print('RF训练集:')

    predict_Target=rf1.predict(X_train)

    print(metrics.classification_report(y_train,predict_Target))

    print(metrics.confusion_matrix(y_train, predict_Target))

    id=np.argwhere(rf1.feature_importances_>=0)

    id=[i for item in id for i in item]

    dic={}

    for i in id:

        dic.update({feature[i]:rf1.feature_importances_[i]})

    df=pd.DataFrame.from_dict(dic,orient='index',columns=['权重'])

    df=df.reset_index().rename(columns={'index':'特征'})

    df=df.sort_values(by='权重',ascending=False)

    data_hight=df['权重'].values.tolist()

    data_x=df['特征'].values.tolist()

    font = {'family': 'Times New Roman','size': 7}

    sns.set(font_scale=1.2)

    plt.rc('font',family='Times New Roman')

    plt.figure(figsize=(8,8))

    plt.barh(range(len(data_x)), data_hight, color='#6699CC')

    plt.yticks(range(len(data_x)),data_x,fontsize=12)

    plt.tick_params(labelsize=12)

    plt.xlabel('Feature importance',fontsize=14)

    plt.title("GB feature importance analysis",fontsize = 14)

    plt.show()

    return list(y_test), list(predict_target_prob_rf)

if __name__=="__main__":

    data1=Read_data("F:\数据杂坛\\0504\heartdisease\Heart-Disease-Data-Set-main\\UCI Heart Disease Dataset.csv")

    data1=data_clean(data1)

    data2=data_encoding(data1)

    X_train, y_train, X_test, y_test,feature= data_partition(data2)

    y_test,predict_target_prob_rf=RF(X_train, y_train, X_test, y_test,feature)

    Draw_ROC(y_test,predict_target_prob_rf)

实现效果:



喜欢记得点赞,在看,收藏,

关注V订阅号:数据杂坛,获取完整代码和效果,将持续更新!

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容