scikit-learn svm库使用小结

自己在hsi_svm3d.py中实现过scikit-learn svm库用于高光谱图像分类任务

参数小结1
C:C-SVC的惩罚参数C?默认值是1.0
C越大,相当于惩罚松弛变量,希望松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。

kernel :核函数,默认是rbf,可以是‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’

0 – 线性:u'v

1 – 多项式:(gammau'v + coef0)^degree

2 – RBF函数:exp(-gamma|u-v|^2)

3 –sigmoid:tanh(gammau'v + coef0)

degree :多项式poly函数的维度,默认是3,选择其他核函数时会被忽略。

gamma : ‘rbf’,‘poly’ 和‘sigmoid’的核函数参数。默认是’auto’,则会选择1/n_features

coef0 :核函数的常数项。对于‘poly’和 ‘sigmoid’有用。

probability :是否采用概率估计?.默认为False

shrinking :是否采用shrinking heuristic方法,默认为true

tol :停止训练的误差值大小,默认为1e-3

cache_size :核函数cache缓存大小,默认为200

class_weight :类别的权重,字典形式传递。设置第几类的参数C为weight*C(C-SVC中的C)

verbose :允许冗余输出?

max_iter :最大迭代次数。-1为无限制。

decision_function_shape :‘ovo’, ‘ovr’ or None, default=None3

random_state :数据洗牌时的种子值,int值

主要调节的参数有:C、kernel、degree、gamma、coef0。

参数小结2

2018-07-05_114328.jpg
2018-07-05_114349.jpg

参数选择:

1、使用sklearn 中的gridsearchcv方法,通过列出参数空间,让程序自己去遍历每一种超参数组合,找到最优的一组。

在svm中使用过,确实不错,但其对于无法满足的超参数(比如Nusvm中的nu)没有解决方案,会直接崩。

参见笔记 网格追踪寻找最优超参数组合Parameter estimation using grid search with cross-validation

2、注意类别不平衡的情况下使用 class_weight='balanced'

使用技巧:

1、数据预处理和一些函数的详细说明在 API 参考手册http://sklearn.apachecn.org/cn/0.19.0/modules/classes.html#module-sklearn.preprocessing

2、在样本维数m>=2*样本个数n时,分类效果就不好了,

3、sklearn.preprocessing.LabelBinarizer

方法:fit_transform(y)

功能:Fit label binarizer and transform multi-class labels to binary labels.

它有一个逆向方法:inverse_transform(Y, threshold=None)

Transform binary labels back to multi-class labels

其实很多函数都有逆向方法。

参考:

1、sklearn.svm.SVC 参数说明

2、scikit-learn 支持向量机算法库使用小结

博客园-刘建平Pinard 3、API 参考手册

转载请注明如下内容:

知乎: @Forfreedom CSDN:Freedom_anytime的博客 - CSDN博客 简书:For_freedom - 简书

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容