import statsmodels as sm
x = ins_features
x = sm.add_constant(x, prepend=False)
y = ins_target
LR_model = sm.Logit(y, x).fit_regularized(method='l1',alpha = 20)
print LR_model_result.params
print LR_model_result.summary
#score
y_predicted = LR_model.predict(test_X)
#save and load model
LR_model.save("abc.txt")
sm.load("abc.txt")
python sklearn
import sklearn
LR_model = sklearn.linear_model.LogisticRegression()
y = train_df["target_train"]
X = train_df[...]
LR_model.fit(X,y)
#pickle LR_model
#test
y_predicted = LR_model.predict_proba(test_dataframe)[:, 1]
#save and load model: using python pickle