什么是激活函数?它有什么作用?

image

什么是人工神经网络?

现在,我相信我们大家都很熟悉什么是A-NN了,但接下来请允许我按照自己的理解给A-NN下个定义——它是一个强健有力的,同时也非常复杂的机器学习技术,它可以模仿人类的大脑,继而模仿大脑的运作。

正如我们的人脑一样,在一个层次上和神经元网络中有数百万个神经元,这些神经元通过一种称之为synapses(突触)的结构彼此紧紧相连。它可以通过 Axons(轴突),将电信号从一个层传递到另一个层。这就是我们人类学习事物的方式。 每当我们看到、听到、感觉和思考时,一个突触(电脉冲)从层次结构中的一个神经元被发射到另一个神经元,这使我们能够从我们出生的那一天起,就开始学习、记住和回忆我们日常生活中的东西。

好的,接下来我保证大家看到的不再是生物学领域的知识了。

什么是激活函数,它在神经网络模型中是如何使用的?

激活函数(Activation functions)对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。它们将非线性特性引入到我们的网络中。其主要目的是将A-NN模型中一个节点的输入信号转换成一个输出信号。该输出信号现在被用作堆叠中下一个层的输入。

image

而在A-NN中的具体操作是这样的,我们做输入(X)和它们对应的权重(W)的乘积之和,并将激活函数f(x)应用于其获取该层的输出并将其作为输入馈送到下一个层。

问题是,为什么我们不能在不激活输入信号的情况下完成此操作呢?

如果我们不运用激活函数的话,则输出信号将仅仅是一个简单的线性函数。线性函数一个一级多项式。现如今,线性方程是很容易解决的,但是它们的复杂性有限,并且从数据中学习复杂函数映射的能力更小。一个没有激活函数的神经网络将只不过是一个线性回归模型(Linear regression Model)罢了,它功率有限,并且大多数情况下执行得并不好。我们希望我们的神经网络不仅仅可以学习和计算线性函数,而且还要比这复杂得多。同样是因为没有激活函数,我们的神经网络将无法学习和模拟其他复杂类型的数据,例如图像、视频、音频、语音等。这就是为什么我们要使用人工神经网络技术,诸如深度学习(Deep learning),来理解一些复杂的事情,一些相互之间具有很多隐藏层的非线性问题,而这也可以帮助我们了解复杂的数据。

那么为什么我们需要非线性函数?

非线性函数是那些一级以上的函数,而且当绘制非线性函数时它们具有曲率。现在我们需要一个可以学习和表示几乎任何东西的神经网络模型,以及可以将输入映射到输出的任意复杂函数。神经网络被认为是通用函数近似器(Universal Function Approximators)。这意味着他们可以计算和学习任何函数。几乎我们可以想到的任何过程都可以表示为神经网络中的函数计算。

而这一切都归结于这一点,我们需要应用激活函数f(x),以便使网络更加强大,增加它的能力,使它可以学习复杂的事物,复杂的表单数据,以及表示输入输出之间非线性的复杂的任意函数映射。因此,使用非线性激活函数,我们便能够从输入输出之间生成非线性映射。

激活函数的另一个重要特征是:它应该是可以区分的。我们需要这样做,以便在网络中向后推进以计算相对于权重的误差(丢失)梯度时执行反向优化策略,然后相应地使用梯度下降或任何其他优化技术优化权重以减少误差。

只要永远记住要做:

“输入时间权重,添加偏差和激活函数”

最流行的激活函数类型

1.Sigmoid函数或者Logistic函数

2.Tanh — Hyperbolic tangent(双曲正切函数)

3.ReLu -Rectified linear units(线性修正单元)

Sigmoid激活函数:它是一个f(x)= 1/1 + exp(-x)形式的激活函数。它的值区间在0和1之间,是一个S形曲线。它很容易理解和应用,但使其不受欢迎的主要原因是:

  • 梯度消失问题

  • 其次,它的输出不是以0为中心。它的梯度更新在不同的方向上且走得太远。 0<output <1,使优化更加困难。<="" p="">

  • Sigmoids函数饱和且kill掉梯度。

  • Sigmoids函数收敛缓慢。

image

现在我们该如何解决上述问题?

双曲正切函数——Tanh:其数学公式是f(x)= 1 - exp(-2x)/ 1 + exp(-2x)。现在它的输出是以0中心的,因为它的值区间在-1到1之间,即-1<output <1。="" 因此,在该方法中优化更容易一些,从而其在实践应用中总是优于sigmoid函数。="" 但它依然存在着梯度消失问题。<="" p="">

image

那么我们该如何处理和纠正梯度消失问题呢?

ReLu -Rectified linear units(线性修正单元):其实在过去几年中它就已经非常受欢迎了。最近证明,相较于Tanh函数,它的收敛性提高了6倍。只要R(x)= max(0,x),即如果x <0,R(x)= 0,如果x> = 0,则R(x)= x。因此,只看这个函数的数学形式,我们就可以看到它非常简单、有效。其实很多时候我们都会注意到,在机器学习和计算机科学领域,最简单、相容的技术和方法才是首选,才是表现最好的。因此,它可以避免和纠正梯度消失问题。现如今,几乎所有深度学习模型现在都使用ReLu函数。

但它的局限性在于它只能在神经网络模型的隐藏层中使用。

因此,对于输出层,我们应该使用Softmax函数来处理分类问题从而计算类的概率。而对于回归问题,它只要简单地使用线性函数就可以了。

ReLu函数的另一个问题是,一些梯度在训练过程中可能很脆弱,甚至可能会死亡。它可以导致权重更新,这将使其永远不会在任何数据点上激活。简单地说ReLu可能会导致死亡神经元。

为了解决这个问题,我们引进了另一个被称为Leaky ReLu的修改函数,让它来解决死亡神经元的问题。它引入了一个小斜坡从而保持更新值具有活力。

然后,我们还有另一个变体,它形成于ReLu函数和Leaky ReLu函数的结合,我们称之为Maxout函数。

image

结论

问题是哪一个更好用呢?

这个问题的答案就是,现在我们应该使用只应用于隐藏层的ReLu函数。当然,如果我们的模型在训练过程中遇到死亡神经元,我们就应该使用leaky ReLu函数或Maxout函数。

而考虑到现实的情况,Sigmoid函数和Tanh函数是不适用的,因为梯度消失问题(vanishing Gradient Problem)是一个很严重的问题,会在训练一个神经网络模型中导致更多问题。

作者:Anish Singh Walia

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,104评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,816评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,697评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,836评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,851评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,441评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,992评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,899评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,457评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,529评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,664评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,346评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,025评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,511评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,611评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,081评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,675评论 2 359

推荐阅读更多精彩内容