TensorFlow工具快速入门教程8-2 线性回归练习基于pandas

简介

波士顿数据集,其中包括以下变量

CRIM 城镇人均犯罪率
zn 占地面积超过25,000平方尺的住宅用地比例
indus 每个城镇非零售业务占的比例。
nox 一氧化氮浓度
rm 每栋住宅的平均房间数量
age 1940年以前建造的自住单位比例
dis 到波士顿五个就业中心的加权距离
tax 每10,000美元全价物业税率
ptratio 城镇的师生比例
medv 自住房屋的中位数, 单位为千美元

您将创建三个不同的数据集:

数据集 目的 形状
Training 训练模型并获得权重 400,10
Evaluation 在看不见的数据上的评估模型性能 100,10
Predict 使用该模型预测新数据的房屋价值 6,10

目标是使用数据集的特征来预测房屋的价值。

在本教程的第二部分中,您将学习如何使用TensorFlow以三种不同的方式导入数据:

  • pandas
  • Numpy
  • 只有TF

他们都提供相同的结果。

您将学习如何使用高级API构建,训练评估线性回归模型。 如果使用的是低级API,则必须手动定义: 损失函数;优化:梯度下降;矩阵乘法;图和张量。这对于初学者来说是乏味且复杂的。

数据集下载:https://itbooks.pipipan.com/fs/18113597-328521226

pandas

Tensorflow目前提供6个预建estimator,其中3个用于分类任务,3个用于回归任务:

  • 回归
    • DNNRegressor
    • LinearRegressor
    • DNNLineaCombinedRegressor
  • 分类
    • DNNClassifier
    • LinearClassifier
    • DNNLineaCombinedClassifier

参考资料

该函数需要两个参数:

  • feature_columns:包含要包含在模型中的变量
  • model_dir:存储图形的路径,保存模型参数等

使用TensorFlow的棘手部分是为模型提供信息。 Tensorflow旨在用于并行计算和非常大的数据集。 由于机器资源的限制,不可能同时为所有数据提供模型。 为此,您需要每次都提供一批。 请注意,我们正在谈论拥有数百万或更多记录的庞大数据集。 如果不添加批处理,最终会出现内存错误。

当模型看到所有数据时,它就完成了一个epoch 。epoch定义了您希望模型查看数据的次数。 最好将此步骤设置为None,并让模型执行迭代次数。

要添加的第二个信息是,如果要在每次迭代之前对数据进行混洗。 在训练期间,重要的是对数据进行混洗,以便模型不会学习数据集的特定模式。 如果模型了解数据的基础模式的细节,则难以概括对未见数据的预测。 这称为overfitting 。 该模型在训练数据上表现良好,但无法正确预测未见数据。

TensorFlow使这两个步骤变得容易。 当数据进入管道时,它知道需要多少观察(批处理)以及是否必须对数据进行混洗。

要指示Tensorflow如何提供模型,可以使用函数pandas_input_fn。 该对象需要5个参数:

  • x:要素数据
  • y:标签数据
  • batch_size:batch。 默认为128
  • num_epoch:纪元的数量,默认为1
  • shuffle:随机播放或不播放数据。 默认情况下,无

评估模型性能的常用方法是:

  • 训练模型
  • 在不同的数据集中评估模型
  • 做预测

代码参见: https://github.com/china-testing/python-api-tesing/blob/master/practices/ts/lr_pd.py

Loss: 1693.105225
count    400.000000
mean      22.625500
std        9.572593
min        5.000000
25%       16.600000
50%       21.400000
75%       25.025000
max       50.000000
Name: medv, dtype: float64
Predictions: [array([35.063747], dtype=float32), array([19.22251], dtype=float32), array([23.879816], dtype=float32), array([34.587215], dtype=float32), array([13.386072], dtype=float32), array([19.621191], dtype=float32)]

后面的Predictions是预测的房子价格。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容