(转载)超大数据快速导入MySQL

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/dingding_12345/article/details/78646484
————————————————
版权声明:本文为CSDN博主「Deen12520」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/dingding_12345/article/details/78646484
一.问题背景
由于论文实验需要,现有下面两个需求.

  1. 将1G的csv文件数据导入MySQL单表sample中,记录数2000w+;
  2. 将上面的sample表中的数据迁移到远程数据库中.

二.解决方案
对于需求1,有如下解决方式.

  1. 使用Navicat 工具栏中’数据导入’功能;
  2. 使用编写Python/Perl脚本导入(未实现).
  3. 使用MySQL的LOAD DATA INFILE命令,语法如下.

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
[REPLACE | IGNORE]
INTO TABLE tbl_name
[PARTITION (partition_name [, partition_name] ...)]
[CHARACTER SET charset_name]
[{FIELDS | COLUMNS}
[TERMINATED BY 'string']
[[OPTIONALLY] ENCLOSED BY 'char']
[ESCAPED BY 'char']
]
[LINES
[STARTING BY 'string']
[TERMINATED BY 'string']
]
[IGNORE number {LINES | ROWS}]
[(col_name_or_user_var
[, col_name_or_user_var] ...)]
[SET col_name={expr | DEFAULT},
[, col_name={expr | DEFAULT}] ...]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
关于其中各参数的介绍见参考文献3[3]

对于需求2,有如下解决方式.

  1. 使用FTP/SCP 或者WinSCP工具,将CSV文件压缩后发送到远程服务器,然后使用LOAD DATA INFILE 导入.
  2. 使用 mysqldump[1];
  3. 使用Navicat的数据传输.
    三.实验环境
    MySQL 5.6
    Windows 7 32bit
    四.实验结果
    对于需求1,由于数据量很大,导致使用方法1时,电脑卡死,放弃.使用LOAD DATA,本地不到10分钟可将数据全部导入.

==注1:使用LOAD之前,需在MySQL中先创建目标表,建议添加一个自增ID列,方便统计记录数,字段顺序和CSV列的顺序保持一致.==

实验结果如图:

20171127163809587.png

==注2: 最后一行类似(col1,col2,@col3,col4..)的语法是指定要插入的列,对于不想插入的列,用@col3表示.==

==注3:如果CSV文件列属性类型数据库中没有,就需要对该列进行处理(转换类型或者不插入这列)==

对于需求2,方法2和3耗时巨大,同样是LOAD DATA 最为高效.
图一为数据传输所花费时间:

五. 实验结论

LOAD DATA INFILE 数据导入功能是非常强大的,相对其他耗时最少.

参考文献

  1. Three methods to transfer a mysql database
  2. 13.2.6 LOAD DATA INFILE Syntax
  3. load的语法

(仅供个人留存学习用)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342