【最大路径和】给定一个二叉树的头节点head,路径的规定有以下三种不同的规定:
1) 路径必须是头节点出发,到叶节点结束,返回最大路径和
2) 路径可以从任意节点出发,但必须往下走到达任何节点,返回最大路径和
3) 路径可以从任意节点出发,到任何节点,返回最大路径和
解答1:
最大路径和 = 每条路径走到叶节点的最大路径和,所以每次往下走,走到叶节点,和之前最大的路径和比较。
路径和 = 当前的节点 + 之前的路径和。
public class Node {
public int value;
public Node(int val) {
value = val;
}
}
publilc static int maxPath(Node head) {
p(head, 0);
return maxSum;
}
public static int maxSum = Integer.MIN_VALUE;
//之前的路径和为pre
public static void p(Node x, int pre) {
if (x.left == null && x.right == null) {
maxSum = Math.max(maxSum, pre + x.value);
}
if (x.left != null) {
p(x.left, x.value + pre);
}
if (x.right != null) {
p(x.right, x.value + pre);
}
}
解答2:
因为是从任意节点出发且只能往下,所以有可能与头节点有关,有可能与头节点无关。
所以就会有五种情况:
1)与头节点无关:1. 自己左子树上的整体最大路径和。2. 自己右子树上的整体最大路径和
- 与头节点有关: 3. 自己 4. x往左走 5. x往右走
public class Info {
public int allTreeMaxSum;
public int fromHeadMaxSum;
public Info(int all, int from) {
this.allTreeMaxSum = all;
this.fromHeadMaxSum = from;
}
}
public static Info f(Node x) {
if (x == null) {
return null;
}
Info leftInfo = f(x.left);
Info rightInfo = f(x.right);
int p1 = Integer.MIN_VALUE;
if (leftInfo != null) {
p1 = leftInfo.allTreeMaxSum;
}
int p2 = Integer.MIN_VALUE;
if (rightInfo != null) {
p2 = rightInfo.allTreeMaxSum;
}
int p3 = x.value;
int p4 = Integer.MIN_VALUE;
if (leftInfo != null) {
p4 = x.value + leftInfo.fromHeadMaxSum;
}
int p5 = Integer.MIN_VALUE;
if (rightInfo != null) {
p5 = x.valule + rightInfo.fromHeadMaxSum;
}
int allTreeMaxSum = Math.max(Math.max(Math.max(p1, p2), p3), Math.max(p4, p5));
int fromHeadMaxSum = Math.max(Math.max(p3, p4), p5);
return new Info(allTreeMaxSum, fromHeadMaxSum);
}
public static int maxSum2(Node head) {
if (head == null) {
return 0;
}
return p(head).allTreeMaxSum;
}
解答3:
因为是从任意节点到任意节点,所以在问题2的基础上只需要再加一种可能性,即与头节点有关时,最大路径和是x既往左走,又往右走
public static Info f(Node x) {
if (x == null) {
return null;
}
Info leftInfo = f(x.left);
Info rightInfo = f(x.right);
int p1 = Integer.MIN_VALUE;
if (leftInfo != null) {
p1 = leftInfo.allTreeMaxSum;
}
int p2 = Integer.MIN_VALUE;
if (rightInfo != null) {
p2 = rightInfo.allTreeMaxSum;
}
int p3 = x.value;
int p4 = Integer.MIN_VALUE;
if (leftInfo != null) {
p4 = x.value + leftInfo.fromHeadMaxSum;
}
int p5 = Integer.MIN_VALUE;
if (rightInfo != null) {
p5 = x.valule + rightInfo.fromHeadMaxSum;
}
int p6 = Integer.MIN_VALUE;
if (leftInfo != null && rightInfo != null) {
p6 = x.value + leftInfo.fromHeadMaxSum + rightInfo.fromHeadMaxSum;
}
int allTreeMaxSum = Math.max(Math.max(Math.max(p1, p2), p3), Math.max(Math.max(p4, p5), p6));
int fromHeadMaxSum = Math.max(Math.max(p3, p4), p5);
return new Info(allTreeMaxSum, fromHeadMaxSum);
}