Yoshua Bengio: 如何学习机器学习

在Quora上问了机器学习相关的问题--机器学习怎么学?
很荣幸得到了Yoshua Bengio的回答。

我特意翻译过来,并加入了资料的链接,大家共飨哈,相信会有所启发,让你少走弯路:

** Yoshua Bengio--如何学习机器学习:**

首先,你要在数学和计算机科学方面有很好的基础。以深度学习为例,你可以看一下MIT出版的书Deep learning的第一部分(网上有电子版,也可以购买纸质版),这一部分介绍了相关的数学和计算机知识。

其次,你需要阅读机器学习的诸多经典书,比如Bishop的《Pattern Recognition and Machine Learning》,Kevin Murphy的《Machine Learning: A Probabilistic Perspective》,观看在线视频如Andrew Ng的coursera课程《Machine Learning》以及Hugo Larochelle关于《neural networks》的在线视频。

再次,你需要开始练习,自己编程实现机器学习算法,把玩一些数据,并参与一些Kaggle上的竞赛。学会调参和模型选择。

最后,要多多阅读。如果你对deep learning 感兴趣,我的书中的第二部分讲解了常用算法的基础。这时,你需要有足够的背景知识,培养阅读大量论文的习惯,促使自己不断思考。

英语好的同学们可以直接看原文:

First you need to be trained with the appropriate basis in mathematics and computer science. In the case of deep learning, you can see part 1 of the MIT Press Deep Learning book (available online for now, eventually MIT Press will have a real paper book) to either brush up on these or see which areas of math and CS are most relevant.

Then you need to read on machine learning (there are several good books, such as Chris Bishop's and Kevin Murphy's, online videos such as Andrew Ng's coursera's class and Hugo Larochelle's videos on neural networks, and you can get a summary of many of the basic issues in chapter 5 of the Deep Learning book).

Then you need to start practicing, i.e., programming some learning algorithms yourself and playing with them on data, try to compete in some Kaggle competitions, for example. Try to become an expert at optimizing hyper-parameters and choosing models appropriately.

In parallel, continue reading. If you are interested in deep learning, part 2 of my book will give you the basis for the most common algorithms. At that point you should have enough background to start a steady regimen of reading papers that tickle your fancy.

资料链接请直接点击Bengio回答中的超链。

希望对你有帮助!
如您有所收获,请点“喜欢”并收藏哦!O(∩_∩)O~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容