树的遍历与搜索

public class BinaryTree<T> {
  TreeNode<T> root;

  public BinaryTree(T array[]) {
    root = createBinaryTree(array, 0);
  }

  /**
   * @param array
   * @param i
   *          <p>
   *          Description:
   *          </p>
   */
  private TreeNode<T> createBinaryTree(T[] array, int index) {
    TreeNode<T> node = null;

    if (index < array.length) {
      node = new TreeNode<T>(array[index]);

      node.left = createBinaryTree(array, index * 2 + 1);
      node.right = createBinaryTree(array, index * 2 + 2);
      // System.out.println(node.value);
      return node;
    }
    return node;
  }

  /**
   * 
   * @param root
   * @return
   *         <p>
   *         Description:二叉树的高度
   *         </p>
   */
  public int getDepth(TreeNode<T> root) {
    if (root == null) {
      return 0;
    }
    return Math.max(getDepth(root.left), getDepth(root.right)) + 1;
  }

  /**
   * 
   * @param root
   * @return
   *         <p>
   *         Description:查找所有的叶子节点
   *         </p>
   */
  public List<TreeNode<T>> getAllLeafNode(TreeNode<T> root) {
    List<TreeNode<T>> list = new ArrayList<TreeNode<T>>();
    if (root == null) {
      return null;
    }
    Queue<TreeNode<T>> queue = new LinkedList<TreeNode<T>>();
    queue.add(root);
    while (!queue.isEmpty()) {
      TreeNode<T> node = queue.poll();
      if (node.left == null && node.right == null) {
        list.add(node);
      }
      if (node.left != null) {
        queue.add(node.left);
      }
      if (node.right != null) {
        queue.add(node.right);
      }

    }
    return list;

  }

  /*
   * 平衡二叉树:左右子树的高度差<=1
   */
  public boolean isBalancedTree(TreeNode<T> root) {
    if (root == null) {
      return false;
    }
    int leftDepth = getDepth(root.left);
    int rightDepth = getDepth(root.right);

    if (Math.abs(leftDepth - rightDepth) <= 1) {
      return true;
    }
    return false;
  }

  public TreeNode<T> reverseTree(TreeNode<T> root) {
    if (root == null) {
      return null;
    }
    TreeNode<T> right = root.right;
    root.right = reverseTree(root.left);

    root.left = reverseTree(right);
    return root;
  }

  /**
   * 广度优先遍历
   * 
   * @param root
   *          <p>
   *          Description:
   *          </p>
   */
  public void levelOrderTraversal(TreeNode<T> root) {
    if (root == null) {
      return;
    }
    Queue<TreeNode<T>> queue = new LinkedList<TreeNode<T>>();
    TreeNode<T> currentNode = null;
    queue.add(root);
    while (!queue.isEmpty()) {
      currentNode = queue.poll();
      System.out.println(currentNode.value);
      if (currentNode.left != null) {
        queue.add(currentNode.left);
      }
      if (currentNode.right != null) {
        queue.add(currentNode.right);
      }
    }
  }

  /**
   * 深度优先遍历
   * 
   * @param root
   *          <p>
   *          Description:树的先根遍历的非递归实现和深度优先一模一样
   *          </p>
   */

  public void depthOrderTraversal(TreeNode<T> root) {
    if (root == null) {
      return;
    }

    Stack<TreeNode<T>> stack = new Stack<TreeNode<T>>();
    stack.push(root);
    while (!stack.isEmpty()) {
      TreeNode<T> currentNode = stack.pop();
      System.out.println(currentNode.value);
      if (currentNode.right != null) {
        stack.push(currentNode.right);
      }
      if (currentNode.left != null) {
        stack.push(currentNode.left);
      }
    }
  }

  // 先根
  public void preOrderTraversal(TreeNode<T> root) {
    if (root == null) {
      return;
    }
    System.out.println(root.value);
    preOrderTraversal(root.left);
    preOrderTraversal(root.right);

  }

  // 中根
  public void inOrderTraversal(TreeNode<T> root) {
    if (root == null) {
      return;
    }

    inOrderTraversal(root.left);
    System.out.println(root.value);
    inOrderTraversal(root.right);
  }

  // 后根
  public void postOrderTraversal(TreeNode<T> root) {
    if (root == null) {
      return;
    }
    postOrderTraversal(root.left);
    postOrderTraversal(root.right);
    System.out.println(root.value);

  }

//后根遍历的非递归   先根 根-->左子树-->右子树  调整为 根--》右子树--》左子树   即为后根的逆序
    //后根遍历,左子树--》右子树--》根
    public List<TreeNode> postOrderTraversalunrecursive(TreeNode root) {
        List<TreeNode> list=new ArrayList<>();
        Stack<TreeNode> stack=new Stack<>();
        stack.push(root);
        
        while(!stack.isEmpty()){
            TreeNode node=stack.pop();
            list.add(node);
            if(node.left!=null){
                stack.push(node.left);
            }
            
            if(node.right!=null){
                stack.push(node.right);
            }
        }
        Collections.reverse(list);
        return list;
    }

public TreeNode<T> getFather(TreeNode<T> root,TreeNode<T> aNode,TreeNode<T> bNode){
        if(root ==null || aNode.equals(root)  || bNode.equals(root)){
            return root;
        }
        
        
        TreeNode<T> left=getFather(root.left, aNode, bNode);
        TreeNode<T> right=getFather(root.right, aNode, bNode);
        if(left!=null && right !=null){
            return root;
        }
        
        if(left!=null){
            return left;
        }
        else
            return right;
    }
  public static void main(String args[]) {
    Integer a[] = { 1, 2, 3, 4, 5, 6 };
    BinaryTree<Integer> tree = new BinaryTree<Integer>(a);

    tree.depthOrderTraversal(tree.root);
    System.out.println("depth:" + tree.getDepth(tree.root));
    tree.levelOrderTraversal(tree.root);
    System.out.println("--------------");

    tree.preOrderTraversal(tree.root);
    System.out.println(tree.isBalancedTree(tree.root));

    TreeNode<Integer> reverse = tree.reverseTree(tree.root);
    tree.depthOrderTraversal(reverse);
    System.out.println("preOrder--------------");
    tree.preOrderTraversal(reverse);
    System.out.println("inOrder--------------");
    tree.inOrderTraversal(tree.root);

    System.out.println("preOrder--------------");
    tree.postOrderTraversal(tree.root);
  }
}

查找所有的左叶子节点

public  Set getAllLeftLeafNode(TreeNode<T> root,Boolean flag,Set set){
        
        if(root ==  null){
            return null;
        }
        if(root.left!=null){
            flag=true;
            //System.out.println("l:"+root.left.value+","+flag);
            getAllLeftLeafNode(root.left,flag,set);
        }
        if(root.right!=null){
            flag=false;
            //System.out.println("r:"+root.right.value+","+flag);

            getAllLeftLeafNode(root.right,flag,set);
        }
        
        if(root.left==null && root.right==null && flag==true){
            System.out.println(root.value);
            set.add(root);
        }
        
        return set;
    }

Find Bottom Left Tree Value (Easy)

Input:

        1
       / \
      2   3
     /   / \
    4   5   6
       /
      7

Output:
7
public T findBottomLeftLeaf(TreeNode root){
        if(root==null){
            return null;
        }
        
        Queue<TreeNode> queue=new LinkedList();
        queue.add(root);
        TreeNode<T> node=null;
        while(!queue.isEmpty()){
            node=queue.poll();
            if(node.right!=null){
                queue.add(node.right);
            }
            if(node.left!=null){
                queue.add(node.left);
                
            }
        }
        return node.value;
    }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容