推荐系统遇上深度学习(五十八)-基于“翻译”的序列推荐方法

关注小编的公众号,后台回复“进群”,一起来交流学习吧!

本文介绍的论文的题目是《Translation-based Recommendation》
论文下载地址是:https://arxiv.org/abs/1707.02410

1、背景

在推荐系统中,建模和预测用户和物品、物品和物品之间的关系是十分重要的。而在序列推荐中,为了预测用户下一个可能交互的物品,需要建模三方的关系。这三方分别是用户u、用户最近交互的物品i(或者一系列物品)、下一个要交互的物品j。

传统的方法大多仅仅建模两方的关系,如矩阵分解模型仅仅建模用户和物品的交互关系,而马尔可夫链的方法仅仅建模用户交互序列中物品的关系。

在本文中,我们提出了一个基于“翻译”(这里加引号是不太确定Translation-based是否应该解释成基于“翻译”的模型,只是暂时这么解释)的推荐模型来同时建模三方的关系,一起来学习一下。

2、模型介绍

2.1 问题定义

本文中用到的一些符号如下:

公式打起来不方便,所以直接在图上进行了解释,嘻嘻。

2.2 模型结构

模型的基本思想很简单,如下图所示:

其基本的思路就是用户对应的向量和用户上一个交互过的物品向量之和,要和用户下一个要交互的物品向量在距离上相近。

这里物品向量用γi表示,用户向量用Tu表示,而Tu可以被分解为两部分:

这么分解乍一看和直接学习一个tu没有区别,但实际推荐的场景中,往往存在数据稀疏以及冷启动的问题,因此学习一个全局的向量t,可以一定程度上解决冷启动的问题。对于新来的用户,将tu被设置成零向量即可,即Tu = t。

接下来,我们考虑一个问题,如何处理热门物品?如果一个物品十分热门,在训练集中出现的次数非常多,那么会导致热门物品对应的向量与许多用户+物品向量的距离非常近,导致推荐时热门物品出现的次数非常多,一定程度上降低了推荐结果的多样性,因此本文的做法是对热门物品进行一定的惩罚:

当用户u上一个交互的物品是i时,下一个交互的物品是j的概率应该正比于距离的相反数(即距离越小,推荐的可能性越大),除此之外,对每一个带推荐物品,这里还加入了一个常数βj。并通过βj对热门物品进行一定的惩罚,如越热门的物品βj越小,这样的话,如果对物品j和j'的距离相同,但j物品相较于j'更加热门,此时βj 会小于βj',因此更倾向于推荐j',从而提升推荐结果的多样性。

2.3 模型训练

模型的整体思路比较简单,在训练时使用pair-wise的方法:

其中j是真实的下一个交互的物品,j'是除j之外的任意一个物品。

2.4 模型预测

在预测阶段,依据距离度量,找到距离最近的物品进行推荐。但到目前为止,我们还没有介绍距离度量的方式,下一节来看一下。

2.5 距离度量

这里文中说距离度量可以用L1的方法,也可以使用L2的方法,二者的计算公式如下:

但从实验结果来看,L2距离是更好的选择。

3、总结

本文略过了实验结果部分,感兴趣的同学可以看一下原文。本节咱们对文中的思路做一个简答的总结:

1)文中使用距离度量的方式,将用户、用户交互过的物品、待推荐物品通过一个公式同时进行考虑。
2)文中提出的方式可以很容易处理长度较长的用户交互序列,因为在使用时仅仅考虑上一个交互的物品。
3)成功将度量学习(Metric Learning)和知识图谱补全(knowledge-graph completion)的思路引入到了推荐系统中, 并取得了不错的效果。简单说一下知识图谱补全,其基本的思想也是将图谱中的实体、关系转换成向量表示,并基于已有的三元组关系去预测未知的实体之间的关系,可以表示成如下的式子:

可以看出与本文的思路十分类似,用户的向量Tu可以近似表示成一种relation。
4)基于本文的思路,又衍生出了其他的论文,如将其与FM进行融合的方法,我们将在下一篇文章中进行介绍,小小期待一下吧。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容