解密MySQL 8.0 multi-valued indexes

本文作者:叶金荣,知数堂联合创始人,MySQL DBA课程讲师。Oracle MySQL ACE,MySQL布道师。有多年MySQL及系统架构设计经验,擅长MySQL企业级应用、数据库设计、优化、故障处理等。

multi-valued indexes有什么特点。

什么是multi-valued index

MySQL 8.0.17起,InnoDB引擎新增了对JSON数据类型的多值索引,即multi-valued index。它的作用是针对JSON数据类型中,同一条记录有多个值的情况,加上索引后,根据这些值条件查询时,也可以指向同一条数据。

假设有一条数据是 {"user":"Bob","zipcode":[94477,94536]},意为Bob这位用户,他拥有多个邮编"94477"和"94536",这时候如果我们想对zipcode属性加索引,就可以选择使用多值索引了,在以往是不支持这个方式的。可以像下面这样创建索引:(建议在PC端或横版观看,下同)

[root@yejr.me]> CREATE INDEX zips ON t1((
CAST(data->'$.zipcode' AS UNSIGNED ARRAY)));

在本例中的多值索引实际上是采用基于CAST()的函数索引,CAST()转换后选择的数据类型除了BINARY和JSON,其他都可以支持。目前multi-valued index只针对InnoDB表中的JSON数据类型,其余场景还不支持。

multi-valued index怎么用

我们来看下一个JSON列怎么创建multi-valued index。

# 创建测试表
[root@yejr.me]> CREATE TABLE customers (
 id INT NOT NULL AUTO_INCREMENT,
 custinfo JSON,
 primary key(id)
)engine=innodb;

# 写入5条测试数据
[root@yejr.me]> INSERT INTO customers(custinfo) VALUES
('{"user":"Jack","user_id":37,"zipcode":[94582,94536]}'),
('{"user":"Jill","user_id":22,"zipcode":[94568,94507,94582]}'),
('{"user":"Bob","user_id":31,"zipcode":[94477,94507]}'),
('{"user":"Mary","user_id":72,"zipcode":[94536]}'),
('{"user":"Ted","user_id":56,"zipcode":[94507,94582]}');

# 执行查询,此时还没创建索引,需要全表扫描
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
****************** 1. row ******************
...
         type: ALL
possible_keys: NULL
          key: NULL
...
         rows: 5
     filtered: 100.00
        Extra: Using where

# 创建multi-valued index
[root@yejr.me]> ALTER TABLE customers ADD INDEX
zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));

# 查看新的执行计划,可以走索引
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
****************** 1. row ******************
...
         type: range
possible_keys: zips
          key: zips
      key_len: 9
          ref: NULL
         rows: 6
     filtered: 100.00
        Extra: Using where; Using MRR

multi-valued index底层是怎么存储的

知道multi-valued index怎么用之后,再来看下它底层是怎么存储索引数据的。以上面的customers表为例,我们利用innblock和bcview工具来确认InnoDB底层是怎么存储的。

1. 先找到辅助索引page

先用innblock工具确认辅助索引zips在哪个page上。

[root@yejr.me]# innblock customers.ibd scan 16
...
===INDEX_ID:56555
level0 total block is (1)
block_no:         4,level:   0|*|
===INDEX_ID:56556
level0 total block is (1)
block_no:         5,level:   0|*|

由于数据量很小,这两个索引都只需要一个page就能放下,辅助索引keys存储在5号page上。

2. 扫描确认辅助索引数据

继续用innblock扫描辅助索引,确认有多少条数据。

[root@yejr.me]# innblock customers.ibd 5 16
...
-----Total used rows:12 used rows list(logic):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(3) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(4) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(7) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
(12) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
-----Total used rows:12 used rows list(phy):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
(3) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(4) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(7) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(12) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
...

可以看到,总共有12条记录,除去INFIMUM、SUPREMUM这两条虚拟记录,共有10条物理记录。为什么是10条记录,而不是5条记录呢,这是因为multi-valued index实际上是把每个zipcode value对都视为一天索引记录。再看一眼表数据:

[root@yejr.me]> select id, custinfo->'$.zipcode' from customers;
+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
|  1 | [94582, 94536]        |
|  2 | [94568, 94507, 94582] |
|  3 | [94477, 94507]        |
|  4 | [94536]               |
|  5 | [94507, 94582]        |
+----+-----------------------+

上面写入的5条数据中,共有10个zipcode,虽然有些zipcode是相同的,但他们对应的id值不同,因此也要分别记录索引。也就是说, "zipcode":[94582,94536] 这里的两个整型数据,实际上在索引树中,是两条独立的数据,只不过他们都分别指向id=1这条数据。那么,这个索引实际上存储的顺序就应该是下面这样才对:

+---------+------+
| zipcode | id   |
+---------+------+
|   94477 |    3 |
|   94507 |    2 |
|   94507 |    3 |
|   94507 |    5 |
|   94536 |    1 |
|   94536 |    4 |
|   94568 |    2 |
|   94582 |    1 |
|   94582 |    2 |
|   94582 |    5 |
+---------+------+

提醒下,由于InnoDB的index extensions特性,辅助索引存储时总是包含聚集索引列值,若有两个值相同的辅助索引值,则会根据其聚集索引列值进行排序。当然了,以上也只是我们的推测,并不能实锤,直接去核对源码好像有点难度。好在可以用另一个神器bcview来查看底层数据。这里之所以没有采用innodb_space工具,是因为它对MySQL 5.7以上的版本兼容性不够好,有些场景下解析出来的可能是错误数据。

3. 用bcview工具确认结论

按照推测,zips这个索引按照逻辑顺序的话,第一条索引记录是 [94477,3]才对,上面看到第一条逻辑记录的偏移量是216,我们来看下。

# 从上面扫描结果可知,一条记录总消耗存储空间是18字节
bcview customers.ibd 16 216 18
...
# 这里为了排版方便,我给人为折行了
current block:00000005 --对应的pageno=5
--Offset:00216 --偏移量216
--cnt bytes:18 --读取18字节
--data is:000000000001710d80000003000000400024
...

来分析下这条数据,要拆分成几段来看。

000000000001710d,8字节(BIGINT),十六进制转成十进制,就是 94477
80000003,4字节(INT),对应十进制3,也就是id=3
000000400024,record headder,6字节,忽略

这表明推测结果是正确的。

另外,如果按照物理写入顺序,则第一条数据id=1这条数据:

+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
|  1 | [94582, 94536]        |
+----+-----------------------+

这条物理记录,共产生两条辅助索引记录,我们一次性扫描出来(36字节):

bcview customers.ibd 16 126 36
...
current block:00000005
--Offset:00126
--cnt bytes:36
--data is:000000000001714880000001000000180036000000000001717680000001000000200048
...

同上,解析结果见下(存储顺序要反着看):

0000000000017148 => 94536
80000001 => id=1
000000180036
0000000000017176 => 94582
80000001 => id=1
000000200048

可以看到,确实是把JSON里的多个值拆开来,对应到聚集索引后存储每个键值。至此,我们完全搞清楚了multi-valued index的底层存储结构。

延伸阅读

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容